feat(mm): faster hashing for spinning disk HDDs

BLAKE3 has poor performance on spinning disks when parallelized. See https://github.com/BLAKE3-team/BLAKE3/issues/31

- Replace `skip_model_hash` setting with `hashing_algorithm`. Any algorithm we support is accepted.
- Add `random` algorithm: hashes a UUID with BLAKE3 to create a random "hash". Equivalent to the previous skip functionality.
- Add `blake3_single` algorithm: hashes on a single thread using BLAKE3, fixes the aforementioned performance issue
- Update model probe to accept the algorithm to hash with as an optional arg, defaulting to `blake3`
- Update all calls of the probe to use the app's configured hashing algorithm
- Update an external script that probes models
- Update tests
- Move ModelHash into its own module to avoid circuclar import issues
This commit is contained in:
psychedelicious 2024-03-14 09:44:55 +11:00
parent 8287fcf097
commit eb6e6548ed
6 changed files with 78 additions and 33 deletions

View File

@ -179,6 +179,8 @@ from pydantic import BaseModel, Field, field_validator
from pydantic.config import JsonDict
from pydantic_settings import SettingsConfigDict
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS
from .config_base import InvokeAISettings
INIT_FILE = Path("invokeai.yaml")
@ -360,7 +362,7 @@ class InvokeAIAppConfig(InvokeAISettings):
node_cache_size : int = Field(default=512, description="How many cached nodes to keep in memory.", json_schema_extra=Categories.Nodes)
# MODEL INSTALL
skip_model_hash : bool = Field(default=False, description="Skip model hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models.", json_schema_extra=Categories.ModelInstall)
hashing_algorithm : HASHING_ALGORITHMS = Field(default="blake3", description="Model hashing algorthim for model installs. 'blake3' is best for SSDs. 'blake3_single' is best for spinning disk HDDs. 'none' disables hashing, instead assigning a UUID to models. Useful when using a memory db to reduce model installation time, or if you don't care about storing stable hashes for models. Alternatively, any other hashlib algorithm is accepted, though these are not nearly as performant as blake3.", json_schema_extra=Categories.ModelInstall)
remote_api_tokens : Optional[list[URLRegexToken]] = Field(
default=None,
description="List of regular expression and token pairs used when downloading models from URLs. The download URL is tested against the regex, and if it matches, the token is provided in as a Bearer token.",

View File

@ -22,7 +22,6 @@ from invokeai.app.services.events.events_base import EventServiceBase
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.model_records import DuplicateModelException, ModelRecordServiceBase
from invokeai.app.services.model_records.model_records_base import ModelRecordChanges
from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_manager.config import (
AnyModelConfig,
BaseModelType,
@ -154,10 +153,7 @@ class ModelInstallService(ModelInstallServiceBase):
model_path = Path(model_path)
config = config or {}
if self._app_config.skip_model_hash:
config["hash"] = uuid_string()
info: AnyModelConfig = ModelProbe.probe(Path(model_path), config)
info: AnyModelConfig = ModelProbe.probe(Path(model_path), config, hash_algo=self._app_config.hashing_algorithm)
if preferred_name := config.get("name"):
preferred_name = Path(preferred_name).with_suffix(model_path.suffix)
@ -585,10 +581,7 @@ class ModelInstallService(ModelInstallServiceBase):
) -> str:
config = config or {}
if self._app_config.skip_model_hash:
config["hash"] = uuid_string()
info = info or ModelProbe.probe(model_path, config)
info = info or ModelProbe.probe(model_path, config, hash_algo=self._app_config.hashing_algorithm)
model_path = model_path.resolve()

View File

@ -1,12 +1,4 @@
# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Fast hashing of diffusers and checkpoint-style models.
Usage:
from invokeai.backend.model_managre.model_hash import FastModelHash
>>> FastModelHash.hash('/home/models/stable-diffusion-v1.5')
'a8e693a126ea5b831c96064dc569956f'
"""
import hashlib
import os
@ -15,9 +7,9 @@ from typing import Callable, Literal, Optional, Union
from blake3 import blake3
MODEL_FILE_EXTENSIONS = (".ckpt", ".safetensors", ".bin", ".pt", ".pth")
from invokeai.app.util.misc import uuid_string
ALGORITHM = Literal[
HASHING_ALGORITHMS = Literal[
"md5",
"sha1",
"sha224",
@ -33,7 +25,10 @@ ALGORITHM = Literal[
"shake_128",
"shake_256",
"blake3",
"blake3_single",
"random",
]
MODEL_FILE_EXTENSIONS = (".ckpt", ".safetensors", ".bin", ".pt", ".pth")
class ModelHash:
@ -53,6 +48,8 @@ class ModelHash:
The final hash is computed by hashing the hashes of all model files in the directory using BLAKE3, ensuring
that directory hashes are never weaker than the file hashes.
A convenience algorithm choice of "random" is also available, which returns a random string. This is not a hash.
Usage:
```py
# BLAKE3 hash
@ -62,11 +59,17 @@ class ModelHash:
```
"""
def __init__(self, algorithm: ALGORITHM = "blake3", file_filter: Optional[Callable[[str], bool]] = None) -> None:
def __init__(
self, algorithm: HASHING_ALGORITHMS = "blake3", file_filter: Optional[Callable[[str], bool]] = None
) -> None:
if algorithm == "blake3":
self._hash_file = self._blake3
elif algorithm == "blake3_single":
self._hash_file = self._blake3_single
elif algorithm in hashlib.algorithms_available:
self._hash_file = self._get_hashlib(algorithm)
elif algorithm == "random":
self._hash_file = self._random
else:
raise ValueError(f"Algorithm {algorithm} not available")
@ -137,7 +140,7 @@ class ModelHash:
@staticmethod
def _blake3(file_path: Path) -> str:
"""Hashes a file using BLAKE3
"""Hashes a file using BLAKE3, using parallelized and memory-mapped I/O to avoid reading the entire file into memory.
Args:
file_path: Path to the file to hash
@ -150,7 +153,21 @@ class ModelHash:
return file_hasher.hexdigest()
@staticmethod
def _get_hashlib(algorithm: ALGORITHM) -> Callable[[Path], str]:
def _blake3_single(file_path: Path) -> str:
"""Hashes a file using BLAKE3, without parallelism. Suitable for spinning hard drives.
Args:
file_path: Path to the file to hash
Returns:
Hexdigest of the hash of the file
"""
file_hasher = blake3()
file_hasher.update_mmap(file_path)
return file_hasher.hexdigest()
@staticmethod
def _get_hashlib(algorithm: HASHING_ALGORITHMS) -> Callable[[Path], str]:
"""Factory function that returns a function to hash a file with the given algorithm.
Args:
@ -172,6 +189,13 @@ class ModelHash:
return hashlib_hasher
@staticmethod
def _random(_file_path: Path) -> str:
"""Returns a random string. This is not a hash.
The string is a UUID, hashed with BLAKE3 to ensure that it is unique."""
return blake3(uuid_string().encode()).hexdigest()
@staticmethod
def _default_file_filter(file_path: str) -> bool:
"""A default file filter that only includes files with the following extensions: .ckpt, .safetensors, .bin, .pt, .pth

View File

@ -9,6 +9,7 @@ from picklescan.scanner import scan_file_path
import invokeai.backend.util.logging as logger
from invokeai.app.util.misc import uuid_string
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, ModelHash
from invokeai.backend.util.util import SilenceWarnings
from .config import (
@ -24,7 +25,6 @@ from .config import (
ModelVariantType,
SchedulerPredictionType,
)
from .hash import ModelHash
from .util.model_util import lora_token_vector_length, read_checkpoint_meta
CkptType = Dict[str, Any]
@ -113,9 +113,7 @@ class ModelProbe(object):
@classmethod
def probe(
cls,
model_path: Path,
fields: Optional[Dict[str, Any]] = None,
cls, model_path: Path, fields: Optional[Dict[str, Any]] = None, hash_algo: HASHING_ALGORITHMS = "blake3"
) -> AnyModelConfig:
"""
Probe the model at model_path and return its configuration record.
@ -160,7 +158,7 @@ class ModelProbe(object):
fields.get("description") or f"{fields['base'].value} {fields['type'].value} model {fields['name']}"
)
fields["format"] = fields.get("format") or probe.get_format()
fields["hash"] = fields.get("hash") or ModelHash().hash(model_path)
fields["hash"] = fields.get("hash") or ModelHash(algorithm=hash_algo).hash(model_path)
fields["default_settings"] = (
fields.get("default_settings") or probe.get_default_settings(fields["name"])

View File

@ -4,20 +4,30 @@
import argparse
from pathlib import Path
from typing import get_args
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS
from invokeai.backend.model_manager import InvalidModelConfigException, ModelProbe
algos = ", ".join(set(get_args(HASHING_ALGORITHMS)))
parser = argparse.ArgumentParser(description="Probe model type")
parser.add_argument(
"model_path",
type=Path,
nargs="+",
)
parser.add_argument(
"--hash_algo",
type=str,
default="blake3",
help=f"Hashing algorithm to use (default: blake3), one of: {algos}",
)
args = parser.parse_args()
for path in args.model_path:
try:
info = ModelProbe.probe(path)
info = ModelProbe.probe(path, hash_algo=args.hash_algo)
print(f"{path}:{info.model_dump_json(indent=4)}")
except InvalidModelConfigException as exc:
print(exc)

View File

@ -6,9 +6,9 @@ from typing import Iterable
import pytest
from blake3 import blake3
from invokeai.backend.model_manager.hash import ALGORITHM, MODEL_FILE_EXTENSIONS, ModelHash
from invokeai.backend.model_hash.model_hash import HASHING_ALGORITHMS, MODEL_FILE_EXTENSIONS, ModelHash
test_cases: list[tuple[ALGORITHM, str]] = [
test_cases: list[tuple[HASHING_ALGORITHMS, str]] = [
("md5", "a0cd925fc063f98dbf029eee315060c3"),
("sha1", "9e362940e5603fdc60566ea100a288ba2fe48b8c"),
("sha256", "6dbdb6a147ad4d808455652bf5a10120161678395f6bfbd21eb6fe4e731aceeb"),
@ -21,7 +21,7 @@ test_cases: list[tuple[ALGORITHM, str]] = [
@pytest.mark.parametrize("algorithm,expected_hash", test_cases)
def test_model_hash_hashes_file(tmp_path: Path, algorithm: ALGORITHM, expected_hash: str):
def test_model_hash_hashes_file(tmp_path: Path, algorithm: HASHING_ALGORITHMS, expected_hash: str):
file = Path(tmp_path / "test")
file.write_text("model data")
md5 = ModelHash(algorithm).hash(file)
@ -29,7 +29,7 @@ def test_model_hash_hashes_file(tmp_path: Path, algorithm: ALGORITHM, expected_h
@pytest.mark.parametrize("algorithm", ["md5", "sha1", "sha256", "sha512", "blake3"])
def test_model_hash_hashes_dir(tmp_path: Path, algorithm: ALGORITHM):
def test_model_hash_hashes_dir(tmp_path: Path, algorithm: HASHING_ALGORITHMS):
model_hash = ModelHash(algorithm)
files = [Path(tmp_path, f"{i}.bin") for i in range(5)]
@ -47,6 +47,24 @@ def test_model_hash_hashes_dir(tmp_path: Path, algorithm: ALGORITHM):
assert md5 == composite_hasher.hexdigest()
def test_model_hash_blake3_matches_blake3_single(tmp_path: Path):
model_hash = ModelHash("blake3")
model_hash_simple = ModelHash("blake3_single")
file = tmp_path / "test.bin"
file.write_text("model data")
assert model_hash.hash(file) == model_hash_simple.hash(file)
def test_model_hash_random_algorithm(tmp_path: Path):
model_hash = ModelHash("random")
file = tmp_path / "test.bin"
file.write_text("model data")
assert model_hash.hash(file) != model_hash.hash(file)
def test_model_hash_raises_error_on_invalid_algorithm():
with pytest.raises(ValueError, match="Algorithm invalid_algorithm not available"):
ModelHash("invalid_algorithm") # pyright: ignore [reportArgumentType]