Merge branch 'main' into lama-infill

This commit is contained in:
blessedcoolant
2023-09-02 23:02:38 +12:00
13 changed files with 95 additions and 68 deletions

View File

@ -1,8 +1,9 @@
import { store } from 'app/store/store';
import {
SchedulerParam,
zBaseModel,
zMainModel,
zMainOrOnnxModel,
zOnnxModel,
zSDXLRefinerModel,
zScheduler,
} from 'features/parameters/types/parameterSchemas';
@ -10,7 +11,6 @@ import { keyBy } from 'lodash-es';
import { OpenAPIV3 } from 'openapi-types';
import { RgbaColor } from 'react-colorful';
import { Node } from 'reactflow';
import { JsonObject } from 'type-fest';
import { Graph, ImageDTO, _InputField, _OutputField } from 'services/api/types';
import {
AnyInvocationType,
@ -18,6 +18,7 @@ import {
ProgressImage,
} from 'services/events/types';
import { O } from 'ts-toolbelt';
import { JsonObject } from 'type-fest';
import { z } from 'zod';
export type NonNullableGraph = O.Required<Graph, 'nodes' | 'edges'>;
@ -770,12 +771,14 @@ export const zCoreMetadata = z
steps: z.number().int().nullish(),
scheduler: z.string().nullish(),
clip_skip: z.number().int().nullish(),
model: zMainOrOnnxModel.nullish(),
controlnets: z.array(zControlField).nullish(),
model: z
.union([zMainModel.deepPartial(), zOnnxModel.deepPartial()])
.nullish(),
controlnets: z.array(zControlField.deepPartial()).nullish(),
loras: z
.array(
z.object({
lora: zLoRAModelField,
lora: zLoRAModelField.deepPartial(),
weight: z.number(),
})
)
@ -785,15 +788,15 @@ export const zCoreMetadata = z
init_image: z.string().nullish(),
positive_style_prompt: z.string().nullish(),
negative_style_prompt: z.string().nullish(),
refiner_model: zSDXLRefinerModel.nullish(),
refiner_model: zSDXLRefinerModel.deepPartial().nullish(),
refiner_cfg_scale: z.number().nullish(),
refiner_steps: z.number().int().nullish(),
refiner_scheduler: z.string().nullish(),
refiner_positive_aesthetic_store: z.number().nullish(),
refiner_negative_aesthetic_store: z.number().nullish(),
refiner_positive_aesthetic_score: z.number().nullish(),
refiner_negative_aesthetic_score: z.number().nullish(),
refiner_start: z.number().nullish(),
})
.catchall(z.record(z.any()));
.passthrough();
export type CoreMetadata = z.infer<typeof zCoreMetadata>;
@ -936,22 +939,10 @@ export const zWorkflow = z.object({
});
export const zValidatedWorkflow = zWorkflow.transform((workflow) => {
const nodeTemplates = store.getState().nodes.nodeTemplates;
const { nodes, edges } = workflow;
const warnings: WorkflowWarning[] = [];
const invocationNodes = nodes.filter(isWorkflowInvocationNode);
const keyedNodes = keyBy(invocationNodes, 'id');
invocationNodes.forEach((node, i) => {
const nodeTemplate = nodeTemplates[node.data.type];
if (!nodeTemplate) {
warnings.push({
message: `Node "${node.data.label || node.data.id}" skipped`,
issues: [`Unable to find template for type "${node.data.type}"`],
data: node,
});
delete nodes[i];
}
});
edges.forEach((edge, i) => {
const sourceNode = keyedNodes[edge.source];
const targetNode = keyedNodes[edge.target];

View File

@ -1,4 +1,6 @@
import * as png from '@stevebel/png';
import { logger } from 'app/logging/logger';
import { parseify } from 'common/util/serialize';
import {
ImageMetadataAndWorkflow,
zCoreMetadata,
@ -18,6 +20,11 @@ export const getMetadataAndWorkflowFromImageBlob = async (
const metadataResult = zCoreMetadata.safeParse(JSON.parse(rawMetadata));
if (metadataResult.success) {
data.metadata = metadataResult.data;
} else {
logger('system').error(
{ error: parseify(metadataResult.error) },
'Problem reading metadata from image'
);
}
}
@ -26,6 +33,11 @@ export const getMetadataAndWorkflowFromImageBlob = async (
const workflowResult = zWorkflow.safeParse(JSON.parse(rawWorkflow));
if (workflowResult.success) {
data.workflow = workflowResult.data;
} else {
logger('system').error(
{ error: parseify(workflowResult.error) },
'Problem reading workflow from image'
);
}
}

View File

@ -61,9 +61,9 @@ export const addSDXLRefinerToGraph = (
if (metadataAccumulator) {
metadataAccumulator.refiner_model = refinerModel;
metadataAccumulator.refiner_positive_aesthetic_store =
metadataAccumulator.refiner_positive_aesthetic_score =
refinerPositiveAestheticScore;
metadataAccumulator.refiner_negative_aesthetic_store =
metadataAccumulator.refiner_negative_aesthetic_score =
refinerNegativeAestheticScore;
metadataAccumulator.refiner_cfg_scale = refinerCFGScale;
metadataAccumulator.refiner_scheduler = refinerScheduler;