mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
report RAM and RAM cache statistics
This commit is contained in:
parent
a4b029d03c
commit
ec10aca91e
@ -43,6 +43,11 @@ import invokeai.backend.util.logging as logger
|
|||||||
from ..invocations.baseinvocation import BaseInvocation
|
from ..invocations.baseinvocation import BaseInvocation
|
||||||
from .graph import GraphExecutionState
|
from .graph import GraphExecutionState
|
||||||
from .item_storage import ItemStorageABC
|
from .item_storage import ItemStorageABC
|
||||||
|
from .model_manager_service import ModelManagerService
|
||||||
|
from invokeai.backend.model_management.model_cache import CacheStats
|
||||||
|
|
||||||
|
# size of GIG in bytes
|
||||||
|
GIG = 1073741824
|
||||||
|
|
||||||
|
|
||||||
class InvocationStatsServiceBase(ABC):
|
class InvocationStatsServiceBase(ABC):
|
||||||
@ -84,7 +89,8 @@ class InvocationStatsServiceBase(ABC):
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def update_invocation_stats(self,
|
def update_invocation_stats(
|
||||||
|
self,
|
||||||
graph_id: str,
|
graph_id: str,
|
||||||
invocation_type: str,
|
invocation_type: str,
|
||||||
time_used: float,
|
time_used: float,
|
||||||
@ -119,6 +125,9 @@ class NodeStats:
|
|||||||
calls: int = 0
|
calls: int = 0
|
||||||
time_used: float = 0.0 # seconds
|
time_used: float = 0.0 # seconds
|
||||||
max_vram: float = 0.0 # GB
|
max_vram: float = 0.0 # GB
|
||||||
|
cache_hits: int = 0
|
||||||
|
cache_misses: int = 0
|
||||||
|
cache_high_watermark: int = 0
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
@ -137,36 +146,50 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
|||||||
self.graph_execution_manager = graph_execution_manager
|
self.graph_execution_manager = graph_execution_manager
|
||||||
# {graph_id => NodeLog}
|
# {graph_id => NodeLog}
|
||||||
self._stats: Dict[str, NodeLog] = {}
|
self._stats: Dict[str, NodeLog] = {}
|
||||||
|
self._cache_stats: Dict[str, CacheStats] = {}
|
||||||
|
|
||||||
class StatsContext:
|
class StatsContext:
|
||||||
def __init__(self, invocation: BaseInvocation, graph_id: str, collector: "InvocationStatsServiceBase"):
|
"""Context manager for collecting statistics."""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
invocation: BaseInvocation,
|
||||||
|
graph_id: str,
|
||||||
|
model_manager: ModelManagerService,
|
||||||
|
collector: "InvocationStatsServiceBase",
|
||||||
|
):
|
||||||
|
"""Initialize statistics for this run."""
|
||||||
self.invocation = invocation
|
self.invocation = invocation
|
||||||
self.collector = collector
|
self.collector = collector
|
||||||
self.graph_id = graph_id
|
self.graph_id = graph_id
|
||||||
self.start_time = 0
|
self.start_time = 0
|
||||||
self.ram_info = None
|
self.ram_used = 0
|
||||||
|
self.model_manager = model_manager
|
||||||
|
|
||||||
def __enter__(self):
|
def __enter__(self):
|
||||||
self.start_time = time.time()
|
self.start_time = time.time()
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
torch.cuda.reset_peak_memory_stats()
|
torch.cuda.reset_peak_memory_stats()
|
||||||
self.ram_info = psutil.virtual_memory()
|
self.ram_used = psutil.Process().memory_info().rss
|
||||||
|
self.model_manager.collect_cache_stats(self.collector._cache_stats[self.graph_id])
|
||||||
|
|
||||||
def __exit__(self, *args):
|
def __exit__(self, *args):
|
||||||
|
"""Called on exit from the context."""
|
||||||
|
ram_used = psutil.Process().memory_info().rss
|
||||||
self.collector.update_invocation_stats(
|
self.collector.update_invocation_stats(
|
||||||
graph_id = self.graph_id,
|
graph_id=self.graph_id,
|
||||||
invocation_type = self.invocation.type,
|
invocation_type=self.invocation.type,
|
||||||
time_used = time.time() - self.start_time,
|
time_used=time.time() - self.start_time,
|
||||||
vram_used = torch.cuda.max_memory_allocated() / 1e9 if torch.cuda.is_available() else 0.0,
|
vram_used=torch.cuda.max_memory_allocated() / GIG if torch.cuda.is_available() else 0.0,
|
||||||
ram_used = psutil.virtual_memory().used / 1e9,
|
ram_used=ram_used / GIG,
|
||||||
ram_changed = (psutil.virtual_memory().used - self.ram_info.used) / 1e9,
|
ram_changed=(ram_used - self.ram_used) / GIG,
|
||||||
)
|
)
|
||||||
|
|
||||||
def collect_stats(
|
def collect_stats(
|
||||||
self,
|
self,
|
||||||
invocation: BaseInvocation,
|
invocation: BaseInvocation,
|
||||||
graph_execution_state_id: str,
|
graph_execution_state_id: str,
|
||||||
|
model_manager: ModelManagerService,
|
||||||
) -> StatsContext:
|
) -> StatsContext:
|
||||||
"""
|
"""
|
||||||
Return a context object that will capture the statistics.
|
Return a context object that will capture the statistics.
|
||||||
@ -175,7 +198,8 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
|||||||
"""
|
"""
|
||||||
if not self._stats.get(graph_execution_state_id): # first time we're seeing this
|
if not self._stats.get(graph_execution_state_id): # first time we're seeing this
|
||||||
self._stats[graph_execution_state_id] = NodeLog()
|
self._stats[graph_execution_state_id] = NodeLog()
|
||||||
return self.StatsContext(invocation, graph_execution_state_id, self)
|
self._cache_stats[graph_execution_state_id] = CacheStats()
|
||||||
|
return self.StatsContext(invocation, graph_execution_state_id, model_manager, self)
|
||||||
|
|
||||||
def reset_all_stats(self):
|
def reset_all_stats(self):
|
||||||
"""Zero all statistics"""
|
"""Zero all statistics"""
|
||||||
@ -188,7 +212,8 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
|||||||
except KeyError:
|
except KeyError:
|
||||||
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}")
|
logger.warning(f"Attempted to clear statistics for unknown graph {graph_execution_id}")
|
||||||
|
|
||||||
def update_invocation_stats(self,
|
def update_invocation_stats(
|
||||||
|
self,
|
||||||
graph_id: str,
|
graph_id: str,
|
||||||
invocation_type: str,
|
invocation_type: str,
|
||||||
time_used: float,
|
time_used: float,
|
||||||
@ -218,7 +243,7 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
|||||||
def log_stats(self):
|
def log_stats(self):
|
||||||
"""
|
"""
|
||||||
Send the statistics to the system logger at the info level.
|
Send the statistics to the system logger at the info level.
|
||||||
Stats will only be printed if when the execution of the graph
|
Stats will only be printed when the execution of the graph
|
||||||
is complete.
|
is complete.
|
||||||
"""
|
"""
|
||||||
completed = set()
|
completed = set()
|
||||||
@ -235,11 +260,21 @@ class InvocationStatsService(InvocationStatsServiceBase):
|
|||||||
total_time += stats.time_used
|
total_time += stats.time_used
|
||||||
|
|
||||||
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s")
|
logger.info(f"TOTAL GRAPH EXECUTION TIME: {total_time:7.3f}s")
|
||||||
logger.info("Current RAM used: " + "%4.2fG" % stats.ram_used + f" (delta={stats.ram_changed:4.2f}G)")
|
logger.info("RAM used: " + "%4.2fG" % stats.ram_used + f" (delta={stats.ram_changed:4.2f}G)")
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
logger.info("Current VRAM used: " + "%4.2fG" % (torch.cuda.memory_allocated() / 1e9))
|
logger.info("VRAM used (all processes): " + "%4.2fG" % (torch.cuda.memory_allocated() / GIG))
|
||||||
|
cache_stats = self._cache_stats[graph_id]
|
||||||
|
logger.info("RAM cache statistics:")
|
||||||
|
logger.info(f" Model cache hits: {cache_stats.hits}")
|
||||||
|
logger.info(f" Model cache misses: {cache_stats.misses}")
|
||||||
|
logger.info(f" Models cached: {cache_stats.in_cache}")
|
||||||
|
logger.info(f" Models cleared from cache: {cache_stats.cleared}")
|
||||||
|
hwm = cache_stats.high_watermark / GIG
|
||||||
|
tot = cache_stats.cache_size / GIG
|
||||||
|
logger.info(f" Cache RAM usage: {hwm:4.2f}/{tot:4.2f}G")
|
||||||
|
|
||||||
completed.add(graph_id)
|
completed.add(graph_id)
|
||||||
|
|
||||||
for graph_id in completed:
|
for graph_id in completed:
|
||||||
del self._stats[graph_id]
|
del self._stats[graph_id]
|
||||||
|
del self._cache_stats[graph_id]
|
||||||
|
@ -22,6 +22,7 @@ from invokeai.backend.model_management import (
|
|||||||
ModelNotFoundException,
|
ModelNotFoundException,
|
||||||
)
|
)
|
||||||
from invokeai.backend.model_management.model_search import FindModels
|
from invokeai.backend.model_management.model_search import FindModels
|
||||||
|
from invokeai.backend.model_management.model_cache import CacheStats
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from invokeai.app.models.exceptions import CanceledException
|
from invokeai.app.models.exceptions import CanceledException
|
||||||
@ -276,6 +277,13 @@ class ModelManagerServiceBase(ABC):
|
|||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def collect_cache_stats(self, cache_stats: CacheStats):
|
||||||
|
"""
|
||||||
|
Reset model cache statistics for graph with graph_id.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def commit(self, conf_file: Optional[Path] = None) -> None:
|
def commit(self, conf_file: Optional[Path] = None) -> None:
|
||||||
"""
|
"""
|
||||||
@ -500,6 +508,12 @@ class ModelManagerService(ModelManagerServiceBase):
|
|||||||
self.logger.debug(f"convert model {model_name}")
|
self.logger.debug(f"convert model {model_name}")
|
||||||
return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory)
|
return self.mgr.convert_model(model_name, base_model, model_type, convert_dest_directory)
|
||||||
|
|
||||||
|
def collect_cache_stats(self, cache_stats: CacheStats):
|
||||||
|
"""
|
||||||
|
Reset model cache statistics for graph with graph_id.
|
||||||
|
"""
|
||||||
|
self.mgr.cache.stats = cache_stats
|
||||||
|
|
||||||
def commit(self, conf_file: Optional[Path] = None):
|
def commit(self, conf_file: Optional[Path] = None):
|
||||||
"""
|
"""
|
||||||
Write current configuration out to the indicated file.
|
Write current configuration out to the indicated file.
|
||||||
|
@ -86,7 +86,9 @@ class DefaultInvocationProcessor(InvocationProcessorABC):
|
|||||||
|
|
||||||
# Invoke
|
# Invoke
|
||||||
try:
|
try:
|
||||||
with statistics.collect_stats(invocation, graph_execution_state.id):
|
graph_id = graph_execution_state.id
|
||||||
|
model_manager = self.__invoker.services.model_manager
|
||||||
|
with statistics.collect_stats(invocation, graph_id, model_manager):
|
||||||
outputs = invocation.invoke(
|
outputs = invocation.invoke(
|
||||||
InvocationContext(
|
InvocationContext(
|
||||||
services=self.__invoker.services,
|
services=self.__invoker.services,
|
||||||
|
@ -21,12 +21,12 @@ import os
|
|||||||
import sys
|
import sys
|
||||||
import hashlib
|
import hashlib
|
||||||
from contextlib import suppress
|
from contextlib import suppress
|
||||||
|
from dataclasses import dataclass
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, Union, types, Optional, Type, Any
|
from typing import Dict, Union, types, Optional, Type, Any
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
import logging
|
|
||||||
import invokeai.backend.util.logging as logger
|
import invokeai.backend.util.logging as logger
|
||||||
from .models import BaseModelType, ModelType, SubModelType, ModelBase
|
from .models import BaseModelType, ModelType, SubModelType, ModelBase
|
||||||
|
|
||||||
@ -41,6 +41,16 @@ DEFAULT_MAX_VRAM_CACHE_SIZE = 2.75
|
|||||||
GIG = 1073741824
|
GIG = 1073741824
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class CacheStats(object):
|
||||||
|
hits: int = 0
|
||||||
|
misses: int = 0
|
||||||
|
high_watermark: int = 0
|
||||||
|
in_cache: int = 0
|
||||||
|
cleared: int = 0
|
||||||
|
cache_size: int = 0
|
||||||
|
|
||||||
|
|
||||||
class ModelLocker(object):
|
class ModelLocker(object):
|
||||||
"Forward declaration"
|
"Forward declaration"
|
||||||
pass
|
pass
|
||||||
@ -115,6 +125,9 @@ class ModelCache(object):
|
|||||||
self.sha_chunksize = sha_chunksize
|
self.sha_chunksize = sha_chunksize
|
||||||
self.logger = logger
|
self.logger = logger
|
||||||
|
|
||||||
|
# used for stats collection
|
||||||
|
self.stats = None
|
||||||
|
|
||||||
self._cached_models = dict()
|
self._cached_models = dict()
|
||||||
self._cache_stack = list()
|
self._cache_stack = list()
|
||||||
|
|
||||||
@ -188,6 +201,8 @@ class ModelCache(object):
|
|||||||
self.logger.info(
|
self.logger.info(
|
||||||
f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
|
f"Loading model {model_path}, type {base_model.value}:{model_type.value}{':'+submodel.value if submodel else ''}"
|
||||||
)
|
)
|
||||||
|
if self.stats:
|
||||||
|
self.stats.misses += 1
|
||||||
|
|
||||||
# this will remove older cached models until
|
# this will remove older cached models until
|
||||||
# there is sufficient room to load the requested model
|
# there is sufficient room to load the requested model
|
||||||
@ -201,6 +216,14 @@ class ModelCache(object):
|
|||||||
|
|
||||||
cache_entry = _CacheRecord(self, model, mem_used)
|
cache_entry = _CacheRecord(self, model, mem_used)
|
||||||
self._cached_models[key] = cache_entry
|
self._cached_models[key] = cache_entry
|
||||||
|
else:
|
||||||
|
if self.stats:
|
||||||
|
self.stats.hits += 1
|
||||||
|
self.stats.cache_size = self.max_cache_size * GIG
|
||||||
|
|
||||||
|
if self.stats:
|
||||||
|
self.stats.high_watermark = max(self.stats.high_watermark, self._cache_size())
|
||||||
|
self.stats.in_cache = len(self._cached_models)
|
||||||
|
|
||||||
with suppress(Exception):
|
with suppress(Exception):
|
||||||
self._cache_stack.remove(key)
|
self._cache_stack.remove(key)
|
||||||
@ -280,14 +303,14 @@ class ModelCache(object):
|
|||||||
"""
|
"""
|
||||||
Given the HF repo id or path to a model on disk, returns a unique
|
Given the HF repo id or path to a model on disk, returns a unique
|
||||||
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
|
hash. Works for legacy checkpoint files, HF models on disk, and HF repo IDs
|
||||||
|
|
||||||
:param model_path: Path to model file/directory on disk.
|
:param model_path: Path to model file/directory on disk.
|
||||||
"""
|
"""
|
||||||
return self._local_model_hash(model_path)
|
return self._local_model_hash(model_path)
|
||||||
|
|
||||||
def cache_size(self) -> float:
|
def cache_size(self) -> float:
|
||||||
"Return the current size of the cache, in GB"
|
"""Return the current size of the cache, in GB."""
|
||||||
current_cache_size = sum([m.size for m in self._cached_models.values()])
|
return self._cache_size() / GIG
|
||||||
return current_cache_size / GIG
|
|
||||||
|
|
||||||
def _has_cuda(self) -> bool:
|
def _has_cuda(self) -> bool:
|
||||||
return self.execution_device.type == "cuda"
|
return self.execution_device.type == "cuda"
|
||||||
@ -310,12 +333,15 @@ class ModelCache(object):
|
|||||||
f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}"
|
f"Current VRAM/RAM usage: {vram}/{ram}; cached_models/loaded_models/locked_models/ = {cached_models}/{loaded_models}/{locked_models}"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def _cache_size(self) -> int:
|
||||||
|
return sum([m.size for m in self._cached_models.values()])
|
||||||
|
|
||||||
def _make_cache_room(self, model_size):
|
def _make_cache_room(self, model_size):
|
||||||
# calculate how much memory this model will require
|
# calculate how much memory this model will require
|
||||||
# multiplier = 2 if self.precision==torch.float32 else 1
|
# multiplier = 2 if self.precision==torch.float32 else 1
|
||||||
bytes_needed = model_size
|
bytes_needed = model_size
|
||||||
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
|
maximum_size = self.max_cache_size * GIG # stored in GB, convert to bytes
|
||||||
current_size = sum([m.size for m in self._cached_models.values()])
|
current_size = self._cache_size()
|
||||||
|
|
||||||
if current_size + bytes_needed > maximum_size:
|
if current_size + bytes_needed > maximum_size:
|
||||||
self.logger.debug(
|
self.logger.debug(
|
||||||
@ -364,6 +390,8 @@ class ModelCache(object):
|
|||||||
f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
|
f"Unloading model {model_key} to free {(model_size/GIG):.2f} GB (-{(cache_entry.size/GIG):.2f} GB)"
|
||||||
)
|
)
|
||||||
current_size -= cache_entry.size
|
current_size -= cache_entry.size
|
||||||
|
if self.stats:
|
||||||
|
self.stats.cleared += 1
|
||||||
del self._cache_stack[pos]
|
del self._cache_stack[pos]
|
||||||
del self._cached_models[model_key]
|
del self._cached_models[model_key]
|
||||||
del cache_entry
|
del cache_entry
|
||||||
|
Loading…
x
Reference in New Issue
Block a user