mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
model merge backend, CLI and TUI working
This commit is contained in:
@ -4,5 +4,5 @@ Initialization file for invokeai.backend.model_management
|
||||
from .model_manager import ModelManager, ModelInfo, AddModelResult
|
||||
from .model_cache import ModelCache
|
||||
from .models import BaseModelType, ModelType, SubModelType, ModelVariantType
|
||||
from .model_merge import merge_diffusion_models_and_save, MergeInterpolationMethod
|
||||
from .model_merge import ModelMerger, MergeInterpolationMethod
|
||||
|
||||
|
@ -279,7 +279,7 @@ class InvalidModelError(Exception):
|
||||
pass
|
||||
|
||||
class AddModelResult(BaseModel):
|
||||
name: str = Field(description="The name of the model after import")
|
||||
name: str = Field(description="The name of the model after installation")
|
||||
model_type: ModelType = Field(description="The type of model")
|
||||
base_model: BaseModelType = Field(description="The base model")
|
||||
config: ModelConfigBase = Field(description="The configuration of the model")
|
||||
@ -496,7 +496,7 @@ class ModelManager(object):
|
||||
model_name: str,
|
||||
base_model: BaseModelType,
|
||||
model_type: ModelType,
|
||||
)->dict:
|
||||
) -> dict:
|
||||
"""
|
||||
Returns a dict describing one installed model, using
|
||||
the combined format of the list_models() method.
|
||||
|
@ -11,109 +11,119 @@ from enum import Enum
|
||||
from pathlib import Path
|
||||
from diffusers import DiffusionPipeline
|
||||
from diffusers import logging as dlogging
|
||||
from typing import List
|
||||
from typing import List, Union
|
||||
|
||||
import invokeai.backend.util.logging as logger
|
||||
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from ...backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType
|
||||
from ...backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType, AddModelResult
|
||||
|
||||
class MergeInterpolationMethod(str, Enum):
|
||||
Sigmoid = "sigmoid"
|
||||
InvSigmoid = "inv_sigmoid"
|
||||
AddDifference = "add_difference"
|
||||
WeightedSum = "weighted_sum"
|
||||
|
||||
def merge_diffusion_models(
|
||||
model_paths: List[Path],
|
||||
alpha: float = 0.5,
|
||||
interp: MergeInterpolationMethod = None,
|
||||
force: bool = False,
|
||||
**kwargs,
|
||||
) -> DiffusionPipeline:
|
||||
"""
|
||||
:param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids
|
||||
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
||||
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
||||
:param interp: The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
|
||||
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
|
||||
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
||||
class ModelMerger(object):
|
||||
def __init__(self, manager: ModelManager):
|
||||
self.manager = manager
|
||||
|
||||
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
|
||||
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
|
||||
"""
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
verbosity = dlogging.get_verbosity()
|
||||
dlogging.set_verbosity_error()
|
||||
|
||||
pipe = DiffusionPipeline.from_pretrained(
|
||||
model_paths[0],
|
||||
custom_pipeline="checkpoint_merger",
|
||||
)
|
||||
merged_pipe = pipe.merge(
|
||||
pretrained_model_name_or_path_list=model_paths,
|
||||
alpha=alpha,
|
||||
interp=interp.value if interp else None, #diffusers API treats None as "weighted sum"
|
||||
force=force,
|
||||
def merge_diffusion_models(
|
||||
self,
|
||||
model_paths: List[Path],
|
||||
alpha: float = 0.5,
|
||||
interp: MergeInterpolationMethod = None,
|
||||
force: bool = False,
|
||||
**kwargs,
|
||||
) -> DiffusionPipeline:
|
||||
"""
|
||||
:param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids
|
||||
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
||||
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
||||
:param interp: The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
|
||||
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
|
||||
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
||||
|
||||
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
|
||||
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
|
||||
"""
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
verbosity = dlogging.get_verbosity()
|
||||
dlogging.set_verbosity_error()
|
||||
|
||||
pipe = DiffusionPipeline.from_pretrained(
|
||||
model_paths[0],
|
||||
custom_pipeline="checkpoint_merger",
|
||||
)
|
||||
merged_pipe = pipe.merge(
|
||||
pretrained_model_name_or_path_list=model_paths,
|
||||
alpha=alpha,
|
||||
interp=interp.value if interp else None, #diffusers API treats None as "weighted sum"
|
||||
force=force,
|
||||
**kwargs,
|
||||
)
|
||||
dlogging.set_verbosity(verbosity)
|
||||
return merged_pipe
|
||||
|
||||
|
||||
def merge_diffusion_models_and_save (
|
||||
self,
|
||||
model_names: List[str],
|
||||
base_model: Union[BaseModelType,str],
|
||||
merged_model_name: str,
|
||||
alpha: float = 0.5,
|
||||
interp: MergeInterpolationMethod = None,
|
||||
force: bool = False,
|
||||
**kwargs,
|
||||
) -> AddModelResult:
|
||||
"""
|
||||
:param models: up to three models, designated by their InvokeAI models.yaml model name
|
||||
:param base_model: base model (must be the same for all merged models!)
|
||||
:param merged_model_name: name for new model
|
||||
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
||||
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
||||
:param interp: The interpolation method to use for the merging. Supports "weighted_average", "sigmoid", "inv_sigmoid", "add_difference" and None.
|
||||
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. Add_difference is A+(B-C).
|
||||
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
||||
|
||||
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
|
||||
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
|
||||
"""
|
||||
model_paths = list()
|
||||
config = self.manager.app_config
|
||||
base_model = BaseModelType(base_model)
|
||||
vae = None
|
||||
|
||||
for mod in model_names:
|
||||
info = self.manager.list_model(mod, base_model=base_model, model_type=ModelType.Main)
|
||||
assert info, f"model {mod}, base_model {base_model}, is unknown"
|
||||
assert info["model_format"] == "diffusers", f"{mod} is not a diffusers model. It must be optimized before merging"
|
||||
assert info["variant"] == "normal", (f"{mod} is a {info['variant']} model, which cannot currently be merged")
|
||||
# pick up the first model's vae
|
||||
if mod == model_names[0]:
|
||||
vae = info.get("vae")
|
||||
model_paths.extend([config.root_path / info["path"]])
|
||||
|
||||
merge_method = None if interp == 'weighted_sum' else MergeInterpolationMethod(interp)
|
||||
merged_pipe = self.merge_diffusion_models(
|
||||
model_paths, alpha, merge_method, force, **kwargs
|
||||
)
|
||||
dlogging.set_verbosity(verbosity)
|
||||
return merged_pipe
|
||||
dump_path = config.models_path / base_model.value / ModelType.Main.value
|
||||
dump_path.mkdir(parents=True, exist_ok=True)
|
||||
dump_path = dump_path / merged_model_name
|
||||
|
||||
|
||||
def merge_diffusion_models_and_save (
|
||||
models: List["str"],
|
||||
base_model: BaseModelType,
|
||||
merged_model_name: str,
|
||||
config: InvokeAIAppConfig,
|
||||
alpha: float = 0.5,
|
||||
interp: MergeInterpolationMethod = None,
|
||||
force: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
:param models: up to three models, designated by their InvokeAI models.yaml model name
|
||||
:param base_model: base model (must be the same for all merged models!)
|
||||
:param merged_model_name: name for new model
|
||||
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
||||
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
||||
:param interp: The interpolation method to use for the merging. Supports "weighted_average", "sigmoid", "inv_sigmoid", "add_difference" and None.
|
||||
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. Add_difference is A+(B-C).
|
||||
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
||||
|
||||
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
|
||||
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
|
||||
"""
|
||||
model_manager = ModelManager(config.model_conf_path)
|
||||
model_paths = list()
|
||||
vae = None
|
||||
for mod in models:
|
||||
info = model_manager.model_info(mod, base_model=base_model, model_type=ModelType.main)
|
||||
assert info, f"model {mod}, base_model {base_model}, is unknown"
|
||||
assert info["format"] == "diffusers", f"{mod} is not a diffusers model. It must be optimized before merging"
|
||||
assert info["variant"] == "normal", (f"{mod} is a {info['variant']} model, which cannot currently be merged")
|
||||
if mod == models[0]:
|
||||
vae = info["vae"]
|
||||
model_paths.extend([info["path"]])
|
||||
|
||||
merged_pipe = merge_diffusion_models(
|
||||
model_paths, alpha, interp, force, **kwargs
|
||||
)
|
||||
dump_path = config.models_path / base_model.value / ModelType.main.value
|
||||
dump_path.mkdir(parents=True, exist_ok=True)
|
||||
dump_path = dump_path / merged_model_name
|
||||
|
||||
merged_pipe.save_pretrained(dump_path, safe_serialization=1)
|
||||
attributes = dict(
|
||||
path = dump_path,
|
||||
description = f"Merge of models {', '.join(models)}",
|
||||
model_format = "diffusers",
|
||||
variant = ModelVariantType.Normal.value,
|
||||
vae = vae,
|
||||
)
|
||||
model_manager.add_model(merged_model_name,
|
||||
base_model = base_model,
|
||||
model_type = ModelType.Main,
|
||||
model_attributes = attributes,
|
||||
clobber = True
|
||||
)
|
||||
merged_pipe.save_pretrained(dump_path, safe_serialization=1)
|
||||
attributes = dict(
|
||||
path = str(dump_path),
|
||||
description = f"Merge of models {', '.join(model_names)}",
|
||||
model_format = "diffusers",
|
||||
variant = ModelVariantType.Normal.value,
|
||||
vae = vae,
|
||||
)
|
||||
return self.manager.add_model(merged_model_name,
|
||||
base_model = base_model,
|
||||
model_type = ModelType.Main,
|
||||
model_attributes = attributes,
|
||||
clobber = True
|
||||
)
|
||||
|
Reference in New Issue
Block a user