mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Split ip_adapter_conditioning out from ConditioningData.
This commit is contained in:
parent
e7ec13f209
commit
ee1b3157ce
@ -487,7 +487,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
self,
|
||||
context: InvocationContext,
|
||||
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]],
|
||||
conditioning_data: ConditioningData,
|
||||
exit_stack: ExitStack,
|
||||
) -> Optional[list[IPAdapterData]]:
|
||||
"""If IP-Adapter is enabled, then this function loads the requisite models, and adds the image prompt embeddings
|
||||
@ -504,7 +503,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
return None
|
||||
|
||||
ip_adapter_data_list = []
|
||||
conditioning_data.ip_adapter_conditioning = []
|
||||
for single_ip_adapter in ip_adapter:
|
||||
ip_adapter_model: Union[IPAdapter, IPAdapterPlus] = exit_stack.enter_context(
|
||||
context.services.model_manager.get_model(
|
||||
@ -537,16 +535,13 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
single_ipa_images, image_encoder_model
|
||||
)
|
||||
|
||||
conditioning_data.ip_adapter_conditioning.append(
|
||||
IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds)
|
||||
)
|
||||
|
||||
ip_adapter_data_list.append(
|
||||
IPAdapterData(
|
||||
ip_adapter_model=ip_adapter_model,
|
||||
weight=single_ip_adapter.weight,
|
||||
begin_step_percent=single_ip_adapter.begin_step_percent,
|
||||
end_step_percent=single_ip_adapter.end_step_percent,
|
||||
ip_adapter_conditioning=IPAdapterConditioningInfo(image_prompt_embeds, uncond_image_prompt_embeds),
|
||||
)
|
||||
)
|
||||
|
||||
@ -780,7 +775,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
|
||||
ip_adapter_data = self.prep_ip_adapter_data(
|
||||
context=context,
|
||||
ip_adapter=self.ip_adapter,
|
||||
conditioning_data=conditioning_data,
|
||||
exit_stack=exit_stack,
|
||||
)
|
||||
|
||||
|
@ -24,7 +24,7 @@ from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
||||
from invokeai.app.services.config import InvokeAIAppConfig
|
||||
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
|
||||
from invokeai.backend.ip_adapter.unet_patcher import UNetPatcher
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData
|
||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningData, IPAdapterConditioningInfo
|
||||
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_attention import apply_regional_prompt_attn
|
||||
from invokeai.backend.stable_diffusion.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
||||
|
||||
@ -165,10 +165,11 @@ class ControlNetData:
|
||||
|
||||
@dataclass
|
||||
class IPAdapterData:
|
||||
ip_adapter_model: IPAdapter = Field(default=None)
|
||||
# TODO: change to polymorphic so can do different weights per step (once implemented...)
|
||||
ip_adapter_model: IPAdapter
|
||||
ip_adapter_conditioning: IPAdapterConditioningInfo
|
||||
|
||||
# Either a single weight applied to all steps, or a list of weights for each step.
|
||||
weight: Union[float, List[float]] = Field(default=1.0)
|
||||
# weight: float = Field(default=1.0)
|
||||
begin_step_percent: float = Field(default=0.0)
|
||||
end_step_percent: float = Field(default=1.0)
|
||||
|
||||
@ -564,12 +565,17 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
|
||||
|
||||
down_intrablock_additional_residuals = accum_adapter_state
|
||||
|
||||
ip_adapter_conditioning = None
|
||||
if ip_adapter_data is not None:
|
||||
ip_adapter_conditioning = [ipa.ip_adapter_conditioning for ipa in ip_adapter_data]
|
||||
|
||||
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
|
||||
sample=latent_model_input,
|
||||
timestep=t, # TODO: debug how handled batched and non batched timesteps
|
||||
step_index=step_index,
|
||||
total_step_count=total_step_count,
|
||||
conditioning_data=conditioning_data,
|
||||
ip_adapter_conditioning=ip_adapter_conditioning,
|
||||
down_block_additional_residuals=down_block_additional_residuals, # for ControlNet
|
||||
mid_block_additional_residual=mid_block_additional_residual, # for ControlNet
|
||||
down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter
|
||||
|
@ -71,5 +71,3 @@ class ConditioningData:
|
||||
ref [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf)
|
||||
"""
|
||||
guidance_rescale_multiplier: float = 0
|
||||
|
||||
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]] = None
|
||||
|
@ -14,6 +14,7 @@ from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||
BasicConditioningInfo,
|
||||
ConditioningData,
|
||||
ExtraConditioningInfo,
|
||||
IPAdapterConditioningInfo,
|
||||
SDXLConditioningInfo,
|
||||
)
|
||||
from invokeai.backend.stable_diffusion.diffusion.regional_prompt_attention import Range, RegionalPromptData
|
||||
@ -329,6 +330,7 @@ class InvokeAIDiffuserComponent:
|
||||
sample: torch.Tensor,
|
||||
timestep: torch.Tensor,
|
||||
conditioning_data: ConditioningData,
|
||||
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]],
|
||||
step_index: int,
|
||||
total_step_count: int,
|
||||
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
|
||||
@ -353,6 +355,7 @@ class InvokeAIDiffuserComponent:
|
||||
x=sample,
|
||||
sigma=timestep,
|
||||
conditioning_data=conditioning_data,
|
||||
ip_adapter_conditioning=ip_adapter_conditioning,
|
||||
cross_attention_control_types_to_do=cross_attention_control_types_to_do,
|
||||
down_block_additional_residuals=down_block_additional_residuals,
|
||||
mid_block_additional_residual=mid_block_additional_residual,
|
||||
@ -366,6 +369,7 @@ class InvokeAIDiffuserComponent:
|
||||
x=sample,
|
||||
sigma=timestep,
|
||||
conditioning_data=conditioning_data,
|
||||
ip_adapter_conditioning=ip_adapter_conditioning,
|
||||
down_block_additional_residuals=down_block_additional_residuals,
|
||||
mid_block_additional_residual=mid_block_additional_residual,
|
||||
down_intrablock_additional_residuals=down_intrablock_additional_residuals,
|
||||
@ -425,6 +429,7 @@ class InvokeAIDiffuserComponent:
|
||||
x,
|
||||
sigma,
|
||||
conditioning_data: ConditioningData,
|
||||
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]],
|
||||
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
|
||||
mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet
|
||||
down_intrablock_additional_residuals: Optional[torch.Tensor] = None, # for T2I-Adapter
|
||||
@ -483,14 +488,14 @@ class InvokeAIDiffuserComponent:
|
||||
}
|
||||
|
||||
# TODO(ryand): Figure out interactions between regional prompting and IP-Adapter conditioning.
|
||||
if conditioning_data.ip_adapter_conditioning is not None:
|
||||
if ip_adapter_conditioning is not None:
|
||||
# Note that we 'stack' to produce tensors of shape (batch_size, num_ip_images, seq_len, token_len).
|
||||
cross_attention_kwargs = {
|
||||
"ip_adapter_image_prompt_embeds": [
|
||||
torch.stack(
|
||||
[ipa_conditioning.uncond_image_prompt_embeds, ipa_conditioning.cond_image_prompt_embeds]
|
||||
)
|
||||
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
|
||||
for ipa_conditioning in ip_adapter_conditioning
|
||||
]
|
||||
}
|
||||
|
||||
@ -527,6 +532,7 @@ class InvokeAIDiffuserComponent:
|
||||
x: torch.Tensor,
|
||||
sigma,
|
||||
conditioning_data: ConditioningData,
|
||||
ip_adapter_conditioning: Optional[list[IPAdapterConditioningInfo]],
|
||||
cross_attention_control_types_to_do: list[CrossAttentionType],
|
||||
down_block_additional_residuals: Optional[torch.Tensor] = None, # for ControlNet
|
||||
mid_block_additional_residual: Optional[torch.Tensor] = None, # for ControlNet
|
||||
@ -581,12 +587,12 @@ class InvokeAIDiffuserComponent:
|
||||
cross_attention_kwargs = None
|
||||
|
||||
# Prepare IP-Adapter cross-attention kwargs for the unconditioned pass.
|
||||
if conditioning_data.ip_adapter_conditioning is not None:
|
||||
if ip_adapter_conditioning is not None:
|
||||
# Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len).
|
||||
cross_attention_kwargs = {
|
||||
"ip_adapter_image_prompt_embeds": [
|
||||
torch.unsqueeze(ipa_conditioning.uncond_image_prompt_embeds, dim=0)
|
||||
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
|
||||
for ipa_conditioning in ip_adapter_conditioning
|
||||
]
|
||||
}
|
||||
|
||||
@ -622,12 +628,12 @@ class InvokeAIDiffuserComponent:
|
||||
cross_attention_kwargs = None
|
||||
|
||||
# Prepare IP-Adapter cross-attention kwargs for the conditioned pass.
|
||||
if conditioning_data.ip_adapter_conditioning is not None:
|
||||
if ip_adapter_conditioning is not None:
|
||||
# Note that we 'unsqueeze' to produce tensors of shape (batch_size=1, num_ip_images, seq_len, token_len).
|
||||
cross_attention_kwargs = {
|
||||
"ip_adapter_image_prompt_embeds": [
|
||||
torch.unsqueeze(ipa_conditioning.cond_image_prompt_embeds, dim=0)
|
||||
for ipa_conditioning in conditioning_data.ip_adapter_conditioning
|
||||
for ipa_conditioning in ip_adapter_conditioning
|
||||
]
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user