mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
what have i done
This commit is contained in:
parent
16b3718d6a
commit
ef474a3196
@ -1,39 +1,42 @@
|
|||||||
from dataclasses import dataclass
|
from typing import Iterator, List, Optional, Tuple, Union
|
||||||
from typing import List, Optional, Union
|
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from compel import Compel, ReturnedEmbeddingsType
|
from compel import Compel, ReturnedEmbeddingsType
|
||||||
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
|
from compel.prompt_parser import Blend, Conjunction, CrossAttentionControlSubstitute, FlattenedPrompt, Fragment
|
||||||
|
from transformers import CLIPTokenizer
|
||||||
|
|
||||||
from invokeai.app.invocations.primitives import ConditioningField, ConditioningOutput
|
import invokeai.backend.util.logging as logger
|
||||||
from invokeai.app.shared.fields import FieldDescriptions
|
from invokeai.app.invocations.fields import (
|
||||||
|
FieldDescriptions,
|
||||||
|
Input,
|
||||||
|
InputField,
|
||||||
|
OutputField,
|
||||||
|
UIComponent,
|
||||||
|
)
|
||||||
|
from invokeai.app.invocations.primitives import ConditioningOutput
|
||||||
|
from invokeai.app.services.model_records import UnknownModelException
|
||||||
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
||||||
|
from invokeai.app.util.ti_utils import extract_ti_triggers_from_prompt
|
||||||
|
from invokeai.backend.lora import LoRAModelRaw
|
||||||
|
from invokeai.backend.model_manager import ModelType
|
||||||
|
from invokeai.backend.model_patcher import ModelPatcher
|
||||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import (
|
||||||
BasicConditioningInfo,
|
BasicConditioningInfo,
|
||||||
|
ConditioningFieldData,
|
||||||
ExtraConditioningInfo,
|
ExtraConditioningInfo,
|
||||||
SDXLConditioningInfo,
|
SDXLConditioningInfo,
|
||||||
)
|
)
|
||||||
|
from invokeai.backend.textual_inversion import TextualInversionModelRaw
|
||||||
|
from invokeai.backend.util.devices import torch_dtype
|
||||||
|
|
||||||
from ...backend.model_management.lora import ModelPatcher
|
|
||||||
from ...backend.model_management.models import ModelNotFoundException, ModelType
|
|
||||||
from ...backend.util.devices import torch_dtype
|
|
||||||
from ..util.ti_utils import extract_ti_triggers_from_prompt
|
|
||||||
from .baseinvocation import (
|
from .baseinvocation import (
|
||||||
BaseInvocation,
|
BaseInvocation,
|
||||||
BaseInvocationOutput,
|
BaseInvocationOutput,
|
||||||
Input,
|
|
||||||
InputField,
|
|
||||||
InvocationContext,
|
|
||||||
OutputField,
|
|
||||||
UIComponent,
|
|
||||||
invocation,
|
invocation,
|
||||||
invocation_output,
|
invocation_output,
|
||||||
)
|
)
|
||||||
from .model import ClipField
|
from .model import ClipField
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class ConditioningFieldData:
|
|
||||||
conditionings: List[BasicConditioningInfo]
|
|
||||||
# unconditioned: Optional[torch.Tensor]
|
# unconditioned: Optional[torch.Tensor]
|
||||||
|
|
||||||
|
|
||||||
@ -48,7 +51,7 @@ class ConditioningFieldData:
|
|||||||
title="Prompt",
|
title="Prompt",
|
||||||
tags=["prompt", "compel"],
|
tags=["prompt", "compel"],
|
||||||
category="conditioning",
|
category="conditioning",
|
||||||
version="1.0.0",
|
version="1.0.1",
|
||||||
)
|
)
|
||||||
class CompelInvocation(BaseInvocation):
|
class CompelInvocation(BaseInvocation):
|
||||||
"""Parse prompt using compel package to conditioning."""
|
"""Parse prompt using compel package to conditioning."""
|
||||||
@ -66,49 +69,34 @@ class CompelInvocation(BaseInvocation):
|
|||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
def invoke(self, context: InvocationContext) -> ConditioningOutput:
|
||||||
tokenizer_info = context.services.model_manager.get_model(
|
tokenizer_info = context.models.load(**self.clip.tokenizer.model_dump())
|
||||||
**self.clip.tokenizer.model_dump(),
|
text_encoder_info = context.models.load(**self.clip.text_encoder.model_dump())
|
||||||
context=context,
|
|
||||||
)
|
|
||||||
text_encoder_info = context.services.model_manager.get_model(
|
|
||||||
**self.clip.text_encoder.model_dump(),
|
|
||||||
context=context,
|
|
||||||
)
|
|
||||||
|
|
||||||
def _lora_loader():
|
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||||
for lora in self.clip.loras:
|
for lora in self.clip.loras:
|
||||||
lora_info = context.services.model_manager.get_model(
|
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
|
||||||
**lora.model_dump(exclude={"weight"}), context=context
|
assert isinstance(lora_info.model, LoRAModelRaw)
|
||||||
)
|
yield (lora_info.model, lora.weight)
|
||||||
yield (lora_info.context.model, lora.weight)
|
|
||||||
del lora_info
|
del lora_info
|
||||||
return
|
return
|
||||||
|
|
||||||
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||||
|
|
||||||
ti_list = []
|
ti_list = []
|
||||||
for trigger in extract_ti_triggers_from_prompt(self.prompt):
|
for trigger in extract_ti_triggers_from_prompt(self.prompt):
|
||||||
name = trigger[1:-1]
|
name = trigger[1:-1]
|
||||||
try:
|
try:
|
||||||
ti_list.append(
|
loaded_model = context.models.load(key=name).model
|
||||||
(
|
assert isinstance(loaded_model, TextualInversionModelRaw)
|
||||||
name,
|
ti_list.append((name, loaded_model))
|
||||||
context.services.model_manager.get_model(
|
except UnknownModelException:
|
||||||
model_name=name,
|
|
||||||
base_model=self.clip.text_encoder.base_model,
|
|
||||||
model_type=ModelType.TextualInversion,
|
|
||||||
context=context,
|
|
||||||
).context.model,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
except ModelNotFoundException:
|
|
||||||
# print(e)
|
# print(e)
|
||||||
# import traceback
|
# import traceback
|
||||||
# print(traceback.format_exc())
|
# print(traceback.format_exc())
|
||||||
print(f'Warn: trigger: "{trigger}" not found')
|
print(f'Warn: trigger: "{trigger}" not found')
|
||||||
|
|
||||||
with (
|
with (
|
||||||
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
|
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
|
||||||
tokenizer,
|
tokenizer,
|
||||||
ti_manager,
|
ti_manager,
|
||||||
),
|
),
|
||||||
@ -116,7 +104,7 @@ class CompelInvocation(BaseInvocation):
|
|||||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||||
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
ModelPatcher.apply_lora_text_encoder(text_encoder, _lora_loader()),
|
||||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||||
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),
|
ModelPatcher.apply_clip_skip(text_encoder_info.model, self.clip.skipped_layers),
|
||||||
):
|
):
|
||||||
compel = Compel(
|
compel = Compel(
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
@ -128,7 +116,7 @@ class CompelInvocation(BaseInvocation):
|
|||||||
|
|
||||||
conjunction = Compel.parse_prompt_string(self.prompt)
|
conjunction = Compel.parse_prompt_string(self.prompt)
|
||||||
|
|
||||||
if context.services.configuration.log_tokenization:
|
if context.config.get().log_tokenization:
|
||||||
log_tokenization_for_conjunction(conjunction, tokenizer)
|
log_tokenization_for_conjunction(conjunction, tokenizer)
|
||||||
|
|
||||||
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
|
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
|
||||||
@ -149,17 +137,14 @@ class CompelInvocation(BaseInvocation):
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
conditioning_name = context.conditioning.save(conditioning_data)
|
||||||
context.services.latents.save(conditioning_name, conditioning_data)
|
|
||||||
|
|
||||||
return ConditioningOutput(
|
return ConditioningOutput.build(conditioning_name)
|
||||||
conditioning=ConditioningField(
|
|
||||||
conditioning_name=conditioning_name,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class SDXLPromptInvocationBase:
|
class SDXLPromptInvocationBase:
|
||||||
|
"""Prompt processor for SDXL models."""
|
||||||
|
|
||||||
def run_clip_compel(
|
def run_clip_compel(
|
||||||
self,
|
self,
|
||||||
context: InvocationContext,
|
context: InvocationContext,
|
||||||
@ -168,26 +153,21 @@ class SDXLPromptInvocationBase:
|
|||||||
get_pooled: bool,
|
get_pooled: bool,
|
||||||
lora_prefix: str,
|
lora_prefix: str,
|
||||||
zero_on_empty: bool,
|
zero_on_empty: bool,
|
||||||
):
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[ExtraConditioningInfo]]:
|
||||||
tokenizer_info = context.services.model_manager.get_model(
|
tokenizer_info = context.models.load(**clip_field.tokenizer.model_dump())
|
||||||
**clip_field.tokenizer.model_dump(),
|
text_encoder_info = context.models.load(**clip_field.text_encoder.model_dump())
|
||||||
context=context,
|
|
||||||
)
|
|
||||||
text_encoder_info = context.services.model_manager.get_model(
|
|
||||||
**clip_field.text_encoder.model_dump(),
|
|
||||||
context=context,
|
|
||||||
)
|
|
||||||
|
|
||||||
# return zero on empty
|
# return zero on empty
|
||||||
if prompt == "" and zero_on_empty:
|
if prompt == "" and zero_on_empty:
|
||||||
cpu_text_encoder = text_encoder_info.context.model
|
cpu_text_encoder = text_encoder_info.model
|
||||||
|
assert isinstance(cpu_text_encoder, torch.nn.Module)
|
||||||
c = torch.zeros(
|
c = torch.zeros(
|
||||||
(
|
(
|
||||||
1,
|
1,
|
||||||
cpu_text_encoder.config.max_position_embeddings,
|
cpu_text_encoder.config.max_position_embeddings,
|
||||||
cpu_text_encoder.config.hidden_size,
|
cpu_text_encoder.config.hidden_size,
|
||||||
),
|
),
|
||||||
dtype=text_encoder_info.context.cache.precision,
|
dtype=cpu_text_encoder.dtype,
|
||||||
)
|
)
|
||||||
if get_pooled:
|
if get_pooled:
|
||||||
c_pooled = torch.zeros(
|
c_pooled = torch.zeros(
|
||||||
@ -198,40 +178,36 @@ class SDXLPromptInvocationBase:
|
|||||||
c_pooled = None
|
c_pooled = None
|
||||||
return c, c_pooled, None
|
return c, c_pooled, None
|
||||||
|
|
||||||
def _lora_loader():
|
def _lora_loader() -> Iterator[Tuple[LoRAModelRaw, float]]:
|
||||||
for lora in clip_field.loras:
|
for lora in clip_field.loras:
|
||||||
lora_info = context.services.model_manager.get_model(
|
lora_info = context.models.load(**lora.model_dump(exclude={"weight"}))
|
||||||
**lora.model_dump(exclude={"weight"}), context=context
|
lora_model = lora_info.model
|
||||||
)
|
assert isinstance(lora_model, LoRAModelRaw)
|
||||||
yield (lora_info.context.model, lora.weight)
|
yield (lora_model, lora.weight)
|
||||||
del lora_info
|
del lora_info
|
||||||
return
|
return
|
||||||
|
|
||||||
# loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
# loras = [(context.models.get(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||||
|
|
||||||
ti_list = []
|
ti_list = []
|
||||||
for trigger in extract_ti_triggers_from_prompt(prompt):
|
for trigger in extract_ti_triggers_from_prompt(prompt):
|
||||||
name = trigger[1:-1]
|
name = trigger[1:-1]
|
||||||
try:
|
try:
|
||||||
ti_list.append(
|
ti_model = context.models.load_by_attrs(
|
||||||
(
|
model_name=name, base_model=text_encoder_info.config.base, model_type=ModelType.TextualInversion
|
||||||
name,
|
).model
|
||||||
context.services.model_manager.get_model(
|
assert isinstance(ti_model, TextualInversionModelRaw)
|
||||||
model_name=name,
|
ti_list.append((name, ti_model))
|
||||||
base_model=clip_field.text_encoder.base_model,
|
except UnknownModelException:
|
||||||
model_type=ModelType.TextualInversion,
|
|
||||||
context=context,
|
|
||||||
).context.model,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
except ModelNotFoundException:
|
|
||||||
# print(e)
|
# print(e)
|
||||||
# import traceback
|
# import traceback
|
||||||
# print(traceback.format_exc())
|
# print(traceback.format_exc())
|
||||||
print(f'Warn: trigger: "{trigger}" not found')
|
logger.warning(f'trigger: "{trigger}" not found')
|
||||||
|
except ValueError:
|
||||||
|
logger.warning(f'trigger: "{trigger}" more than one similarly-named textual inversion models')
|
||||||
|
|
||||||
with (
|
with (
|
||||||
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (
|
ModelPatcher.apply_ti(tokenizer_info.model, text_encoder_info.model, ti_list) as (
|
||||||
tokenizer,
|
tokenizer,
|
||||||
ti_manager,
|
ti_manager,
|
||||||
),
|
),
|
||||||
@ -239,7 +215,7 @@ class SDXLPromptInvocationBase:
|
|||||||
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
# Apply the LoRA after text_encoder has been moved to its target device for faster patching.
|
||||||
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
ModelPatcher.apply_lora(text_encoder, _lora_loader(), lora_prefix),
|
||||||
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
# Apply CLIP Skip after LoRA to prevent LoRA application from failing on skipped layers.
|
||||||
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),
|
ModelPatcher.apply_clip_skip(text_encoder_info.model, clip_field.skipped_layers),
|
||||||
):
|
):
|
||||||
compel = Compel(
|
compel = Compel(
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
@ -253,7 +229,7 @@ class SDXLPromptInvocationBase:
|
|||||||
|
|
||||||
conjunction = Compel.parse_prompt_string(prompt)
|
conjunction = Compel.parse_prompt_string(prompt)
|
||||||
|
|
||||||
if context.services.configuration.log_tokenization:
|
if context.config.get().log_tokenization:
|
||||||
# TODO: better logging for and syntax
|
# TODO: better logging for and syntax
|
||||||
log_tokenization_for_conjunction(conjunction, tokenizer)
|
log_tokenization_for_conjunction(conjunction, tokenizer)
|
||||||
|
|
||||||
@ -286,7 +262,7 @@ class SDXLPromptInvocationBase:
|
|||||||
title="SDXL Prompt",
|
title="SDXL Prompt",
|
||||||
tags=["sdxl", "compel", "prompt"],
|
tags=["sdxl", "compel", "prompt"],
|
||||||
category="conditioning",
|
category="conditioning",
|
||||||
version="1.0.0",
|
version="1.0.1",
|
||||||
)
|
)
|
||||||
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||||
"""Parse prompt using compel package to conditioning."""
|
"""Parse prompt using compel package to conditioning."""
|
||||||
@ -357,6 +333,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
|||||||
dim=1,
|
dim=1,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
assert c2_pooled is not None
|
||||||
conditioning_data = ConditioningFieldData(
|
conditioning_data = ConditioningFieldData(
|
||||||
conditionings=[
|
conditionings=[
|
||||||
SDXLConditioningInfo(
|
SDXLConditioningInfo(
|
||||||
@ -368,14 +345,9 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
conditioning_name = context.conditioning.save(conditioning_data)
|
||||||
context.services.latents.save(conditioning_name, conditioning_data)
|
|
||||||
|
|
||||||
return ConditioningOutput(
|
return ConditioningOutput.build(conditioning_name)
|
||||||
conditioning=ConditioningField(
|
|
||||||
conditioning_name=conditioning_name,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@invocation(
|
@invocation(
|
||||||
@ -383,7 +355,7 @@ class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
|||||||
title="SDXL Refiner Prompt",
|
title="SDXL Refiner Prompt",
|
||||||
tags=["sdxl", "compel", "prompt"],
|
tags=["sdxl", "compel", "prompt"],
|
||||||
category="conditioning",
|
category="conditioning",
|
||||||
version="1.0.0",
|
version="1.0.1",
|
||||||
)
|
)
|
||||||
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||||
"""Parse prompt using compel package to conditioning."""
|
"""Parse prompt using compel package to conditioning."""
|
||||||
@ -410,6 +382,7 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
|
|||||||
|
|
||||||
add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
|
add_time_ids = torch.tensor([original_size + crop_coords + (self.aesthetic_score,)])
|
||||||
|
|
||||||
|
assert c2_pooled is not None
|
||||||
conditioning_data = ConditioningFieldData(
|
conditioning_data = ConditioningFieldData(
|
||||||
conditionings=[
|
conditionings=[
|
||||||
SDXLConditioningInfo(
|
SDXLConditioningInfo(
|
||||||
@ -421,14 +394,9 @@ class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
conditioning_name = context.conditioning.save(conditioning_data)
|
||||||
context.services.latents.save(conditioning_name, conditioning_data)
|
|
||||||
|
|
||||||
return ConditioningOutput(
|
return ConditioningOutput.build(conditioning_name)
|
||||||
conditioning=ConditioningField(
|
|
||||||
conditioning_name=conditioning_name,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@invocation_output("clip_skip_output")
|
@invocation_output("clip_skip_output")
|
||||||
@ -449,7 +417,7 @@ class ClipSkipInvocation(BaseInvocation):
|
|||||||
"""Skip layers in clip text_encoder model."""
|
"""Skip layers in clip text_encoder model."""
|
||||||
|
|
||||||
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
|
clip: ClipField = InputField(description=FieldDescriptions.clip, input=Input.Connection, title="CLIP")
|
||||||
skipped_layers: int = InputField(default=0, description=FieldDescriptions.skipped_layers)
|
skipped_layers: int = InputField(default=0, ge=0, description=FieldDescriptions.skipped_layers)
|
||||||
|
|
||||||
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
|
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
|
||||||
self.clip.skipped_layers += self.skipped_layers
|
self.clip.skipped_layers += self.skipped_layers
|
||||||
@ -459,9 +427,9 @@ class ClipSkipInvocation(BaseInvocation):
|
|||||||
|
|
||||||
|
|
||||||
def get_max_token_count(
|
def get_max_token_count(
|
||||||
tokenizer,
|
tokenizer: CLIPTokenizer,
|
||||||
prompt: Union[FlattenedPrompt, Blend, Conjunction],
|
prompt: Union[FlattenedPrompt, Blend, Conjunction],
|
||||||
truncate_if_too_long=False,
|
truncate_if_too_long: bool = False,
|
||||||
) -> int:
|
) -> int:
|
||||||
if type(prompt) is Blend:
|
if type(prompt) is Blend:
|
||||||
blend: Blend = prompt
|
blend: Blend = prompt
|
||||||
@ -473,7 +441,9 @@ def get_max_token_count(
|
|||||||
return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long))
|
return len(get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long))
|
||||||
|
|
||||||
|
|
||||||
def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True) -> List[str]:
|
def get_tokens_for_prompt_object(
|
||||||
|
tokenizer: CLIPTokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long: bool = True
|
||||||
|
) -> List[str]:
|
||||||
if type(parsed_prompt) is Blend:
|
if type(parsed_prompt) is Blend:
|
||||||
raise ValueError("Blend is not supported here - you need to get tokens for each of its .children")
|
raise ValueError("Blend is not supported here - you need to get tokens for each of its .children")
|
||||||
|
|
||||||
@ -486,24 +456,29 @@ def get_tokens_for_prompt_object(tokenizer, parsed_prompt: FlattenedPrompt, trun
|
|||||||
for x in parsed_prompt.children
|
for x in parsed_prompt.children
|
||||||
]
|
]
|
||||||
text = " ".join(text_fragments)
|
text = " ".join(text_fragments)
|
||||||
tokens = tokenizer.tokenize(text)
|
tokens: List[str] = tokenizer.tokenize(text)
|
||||||
if truncate_if_too_long:
|
if truncate_if_too_long:
|
||||||
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
|
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
|
||||||
tokens = tokens[0:max_tokens_length]
|
tokens = tokens[0:max_tokens_length]
|
||||||
return tokens
|
return tokens
|
||||||
|
|
||||||
|
|
||||||
def log_tokenization_for_conjunction(c: Conjunction, tokenizer, display_label_prefix=None):
|
def log_tokenization_for_conjunction(
|
||||||
|
c: Conjunction, tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
|
||||||
|
) -> None:
|
||||||
display_label_prefix = display_label_prefix or ""
|
display_label_prefix = display_label_prefix or ""
|
||||||
for i, p in enumerate(c.prompts):
|
for i, p in enumerate(c.prompts):
|
||||||
if len(c.prompts) > 1:
|
if len(c.prompts) > 1:
|
||||||
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
|
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
|
||||||
else:
|
else:
|
||||||
|
assert display_label_prefix is not None
|
||||||
this_display_label_prefix = display_label_prefix
|
this_display_label_prefix = display_label_prefix
|
||||||
log_tokenization_for_prompt_object(p, tokenizer, display_label_prefix=this_display_label_prefix)
|
log_tokenization_for_prompt_object(p, tokenizer, display_label_prefix=this_display_label_prefix)
|
||||||
|
|
||||||
|
|
||||||
def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None):
|
def log_tokenization_for_prompt_object(
|
||||||
|
p: Union[Blend, FlattenedPrompt], tokenizer: CLIPTokenizer, display_label_prefix: Optional[str] = None
|
||||||
|
) -> None:
|
||||||
display_label_prefix = display_label_prefix or ""
|
display_label_prefix = display_label_prefix or ""
|
||||||
if type(p) is Blend:
|
if type(p) is Blend:
|
||||||
blend: Blend = p
|
blend: Blend = p
|
||||||
@ -543,7 +518,12 @@ def log_tokenization_for_prompt_object(p: Union[Blend, FlattenedPrompt], tokeniz
|
|||||||
log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix)
|
log_tokenization_for_text(text, tokenizer, display_label=display_label_prefix)
|
||||||
|
|
||||||
|
|
||||||
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
|
def log_tokenization_for_text(
|
||||||
|
text: str,
|
||||||
|
tokenizer: CLIPTokenizer,
|
||||||
|
display_label: Optional[str] = None,
|
||||||
|
truncate_if_too_long: Optional[bool] = False,
|
||||||
|
) -> None:
|
||||||
"""shows how the prompt is tokenized
|
"""shows how the prompt is tokenized
|
||||||
# usually tokens have '</w>' to indicate end-of-word,
|
# usually tokens have '</w>' to indicate end-of-word,
|
||||||
# but for readability it has been replaced with ' '
|
# but for readability it has been replaced with ' '
|
||||||
|
Loading…
Reference in New Issue
Block a user