mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
preload_models.py script downloads the weight files
- user can select which weight files to download using huggingface cache - user must log in to huggingface, generate an access token, and accept license terms the very first time this is run. After that, everything works automatically. - added placeholder for docs for installing models - also got rid of unused config files. hopefully they weren't needed for textual inversion, but I don't think so.
This commit is contained in:
@ -3,9 +3,11 @@
|
||||
# Before running stable-diffusion on an internet-isolated machine,
|
||||
# run this script from one with internet connectivity. The
|
||||
# two machines must share a common .cache directory.
|
||||
from transformers import CLIPTokenizer, CLIPTextModel
|
||||
#
|
||||
# Coauthor: Kevin Turner http://github.com/keturn
|
||||
#
|
||||
print('Loading Python libraries...\n')
|
||||
import clip
|
||||
from transformers import BertTokenizerFast, AutoFeatureExtractor
|
||||
import sys
|
||||
import transformers
|
||||
import os
|
||||
@ -14,9 +16,247 @@ import torch
|
||||
import urllib.request
|
||||
import zipfile
|
||||
import traceback
|
||||
import getpass
|
||||
from omegaconf import OmegaConf
|
||||
from pathlib import Path
|
||||
from transformers import CLIPTokenizer, CLIPTextModel
|
||||
from transformers import BertTokenizerFast, AutoFeatureExtractor
|
||||
from huggingface_hub import hf_hub_download, HfFolder, hf_hub_url
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
|
||||
#--------------------------globals--
|
||||
Model_dir = './models/ldm/stable-diffusion-v1/'
|
||||
Config_file = './configs/models.yaml'
|
||||
SD_Configs = './configs/stable-diffusion'
|
||||
Datasets = {
|
||||
'stable-diffusion-1.5': {
|
||||
'description': 'The newest Stable Diffusion version 1.5 weight file (4.27 GB)',
|
||||
'repo_id': 'runwayml/stable-diffusion-v1-5',
|
||||
'config': 'v1-inference.yaml',
|
||||
'file': 'v1-5-pruned-emaonly.ckpt',
|
||||
'recommended': True,
|
||||
'width': 512,
|
||||
'height': 512,
|
||||
},
|
||||
'inpainting-1.5': {
|
||||
'description': 'RunwayML SD 1.5 model optimized for inpainting (4.27 GB)',
|
||||
'repo_id': 'runwayml/stable-diffusion-inpainting',
|
||||
'config': 'v1-inpainting-inference.yaml',
|
||||
'file': 'sd-v1-5-inpainting.ckpt',
|
||||
'recommended': True,
|
||||
'width': 512,
|
||||
'height': 512,
|
||||
},
|
||||
'stable-diffusion-1.4': {
|
||||
'description': 'The original Stable Diffusion version 1.4 weight file (4.27 GB)',
|
||||
'repo_id': 'CompVis/stable-diffusion-v-1-4-original',
|
||||
'config': 'v1-inference.yaml',
|
||||
'file': 'sd-v1-4.ckpt',
|
||||
'recommended': False,
|
||||
'width': 512,
|
||||
'height': 512,
|
||||
},
|
||||
'waifu-diffusion-1.3': {
|
||||
'description': 'Stable Diffusion 1.4 fine tuned on anime-styled images (4.27)',
|
||||
'repo_id': 'hakurei/waifu-diffusion-v1-3',
|
||||
'config': 'v1-inference.yaml',
|
||||
'file': 'model-epoch09-float32.ckpt',
|
||||
'recommended': False,
|
||||
'width': 512,
|
||||
'height': 512,
|
||||
},
|
||||
'ft-mse-improved-autoencoder-840000': {
|
||||
'description': 'StabilityAI improved autoencoder fine-tuned for human faces (recommended; 335 MB)',
|
||||
'repo_id': 'stabilityai/sd-vae-ft-mse-original',
|
||||
'config': 'VAE',
|
||||
'file': 'vae-ft-mse-840000-ema-pruned.ckpt',
|
||||
'recommended': True,
|
||||
'width': 512,
|
||||
'height': 512,
|
||||
},
|
||||
}
|
||||
Config_preamble = '''# This file describes the alternative machine learning models
|
||||
# available to InvokeAI script.
|
||||
#
|
||||
# To add a new model, follow the examples below. Each
|
||||
# model requires a model config file, a weights file,
|
||||
# and the width and height of the images it
|
||||
# was trained on.
|
||||
'''
|
||||
|
||||
#---------------------------------------------
|
||||
def introduction():
|
||||
print(
|
||||
'''Welcome to InvokeAI. This script will help download the Stable Diffusion weight files
|
||||
and other large models that are needed for text to image generation. At any point you may interrupt
|
||||
this program and resume later.\n'''
|
||||
)
|
||||
|
||||
#---------------------------------------------
|
||||
def yes_or_no(prompt:str, default_yes=True):
|
||||
default = "y" if default_yes else 'n'
|
||||
response = input(f'{prompt} [{default}] ') or default
|
||||
if default_yes:
|
||||
return response[0] not in ('n','N')
|
||||
else:
|
||||
return response[0] in ('y','Y')
|
||||
|
||||
#---------------------------------------------
|
||||
def user_wants_to_download_weights():
|
||||
return yes_or_no('Would you like to download the Stable Diffusion model weights now?')
|
||||
|
||||
#---------------------------------------------
|
||||
def select_datasets():
|
||||
done = False
|
||||
while not done:
|
||||
print('''
|
||||
Choose the weight file(s) you wish to download. Before downloading you
|
||||
will be given the option to view and change your selections.
|
||||
'''
|
||||
)
|
||||
datasets = dict()
|
||||
|
||||
counter = 1
|
||||
dflt = None # the first model selected will be the default; TODO let user change
|
||||
for ds in Datasets.keys():
|
||||
recommended = '(recommended)' if Datasets[ds]['recommended'] else ''
|
||||
print(f'[{counter}] {ds}:\n {Datasets[ds]["description"]} {recommended}')
|
||||
if yes_or_no(' Download?',default_yes=Datasets[ds]['recommended']):
|
||||
datasets[ds]=counter
|
||||
counter += 1
|
||||
|
||||
print('The following weight files will be downloaded:')
|
||||
for ds in datasets:
|
||||
dflt = '*' if dflt is None else ''
|
||||
print(f' [{datasets[ds]}] {ds}{dflt}')
|
||||
print("*default")
|
||||
ok_to_download = yes_or_no('Ok to download?')
|
||||
if not ok_to_download:
|
||||
if yes_or_no('Change your selection?'):
|
||||
pass
|
||||
else:
|
||||
done = True
|
||||
else:
|
||||
done = True
|
||||
return datasets if ok_to_download else None
|
||||
|
||||
#-------------------------------Authenticate against Hugging Face
|
||||
def authenticate():
|
||||
print('''
|
||||
To download the Stable Diffusion weight files you need to read and accept the
|
||||
CreativeML Responsible AI license. If you have not already done so, please
|
||||
create an account at https://huggingface.co. Then login under your account and
|
||||
read and accept the license available at https://huggingface.co/CompVis/stable-diffusion-v-1-4-original.
|
||||
'''
|
||||
)
|
||||
input('Press <enter> when you are ready to continue:')
|
||||
access_token = HfFolder.get_token()
|
||||
if access_token is None:
|
||||
print('''
|
||||
Thank you! Now you need to authenticate with your HuggingFace access token.
|
||||
Go to https://huggingface.co/settings/tokens and create a token. Copy it to the
|
||||
clipboard and paste it here: '''
|
||||
)
|
||||
access_token = getpass.getpass()
|
||||
HfFolder.save_token(access_token)
|
||||
return access_token
|
||||
|
||||
#---------------------------------------------
|
||||
# look for legacy model.ckpt in models directory and offer to
|
||||
# normalize its name
|
||||
def migrate_models_ckpt():
|
||||
if not os.path.exists(os.path.join(Model_dir,'model.ckpt')):
|
||||
return
|
||||
new_name = Datasets['stable-diffusion-1.4']['file']
|
||||
print('You seem to have the Stable Diffusion v4.1 "model.ckpt" already installed.')
|
||||
rename = yes_or_no(f'Ok to rename it to "{new_name}" for future reference?')
|
||||
if rename:
|
||||
print(f'model.ckpt => {new_name}')
|
||||
os.rename(os.path.join(Model_dir,'model.ckpt'),os.path.join(Model_dir,new_name))
|
||||
|
||||
#---------------------------------------------
|
||||
def download_weight_datasets(models:dict, access_token:str):
|
||||
migrate_models_ckpt()
|
||||
successful = dict()
|
||||
for mod in models.keys():
|
||||
repo_id = Datasets[mod]['repo_id']
|
||||
filename = Datasets[mod]['file']
|
||||
success = conditional_download(
|
||||
repo_id=repo_id,
|
||||
model_name=filename,
|
||||
access_token=access_token
|
||||
)
|
||||
if success:
|
||||
successful[mod] = True
|
||||
keys = ', '.join(successful.keys())
|
||||
print(f'Successfully installed {keys}')
|
||||
return successful
|
||||
|
||||
#---------------------------------------------
|
||||
def conditional_download(repo_id:str, model_name:str, access_token:str):
|
||||
model_dest = os.path.join(Model_dir, model_name)
|
||||
if os.path.exists(model_dest):
|
||||
print(f' * {model_name}: exists')
|
||||
return True
|
||||
os.makedirs(os.path.dirname(model_dest), exist_ok=True)
|
||||
|
||||
try:
|
||||
print(f' * {model_name}: downloading or retrieving from cache...')
|
||||
path = Path(hf_hub_download(repo_id, model_name, use_auth_token=access_token))
|
||||
path.resolve(strict=True).link_to(model_dest)
|
||||
except Exception as e:
|
||||
print(f'** Error downloading {model_name}: {str(e)} **')
|
||||
return False
|
||||
return True
|
||||
|
||||
#---------------------------------------------
|
||||
def update_config_file(successfully_downloaded:dict):
|
||||
try:
|
||||
yaml = new_config_file_contents(successfully_downloaded)
|
||||
tmpfile = os.path.join(os.path.dirname(Config_file),'new_config.tmp')
|
||||
with open(tmpfile, 'w') as outfile:
|
||||
outfile.write(Config_preamble)
|
||||
outfile.write(yaml)
|
||||
os.rename(tmpfile,Config_file)
|
||||
except Exception as e:
|
||||
print(f'**Error creating config file {Config_file}: {str(e)} **')
|
||||
return
|
||||
print(f'Successfully created new configuration file {Config_file}')
|
||||
|
||||
|
||||
#---------------------------------------------
|
||||
def new_config_file_contents(successfully_downloaded:dict)->str:
|
||||
conf = OmegaConf.load(Config_file)
|
||||
|
||||
# find the VAE file, if there is one
|
||||
vae = None
|
||||
default_selected = False
|
||||
|
||||
for model in successfully_downloaded:
|
||||
if Datasets[model]['config'] == 'VAE':
|
||||
vae = Datasets[model]['file']
|
||||
|
||||
for model in successfully_downloaded:
|
||||
if Datasets[model]['config'] == 'VAE': # skip VAE entries
|
||||
continue
|
||||
stanza = conf[model] if model in conf else { }
|
||||
|
||||
stanza['description'] = Datasets[model]['description']
|
||||
stanza['weights'] = os.path.join(Model_dir,Datasets[model]['file'])
|
||||
stanza['config'] =os.path.join(SD_Configs, Datasets[model]['config'])
|
||||
stanza['width'] = Datasets[model]['width']
|
||||
stanza['height'] = Datasets[model]['height']
|
||||
stanza.pop('default',None) # this will be set later
|
||||
if vae:
|
||||
stanza['vae'] = os.path.join(Model_dir,vae)
|
||||
# BUG - the first stanza is always the default. User should select.
|
||||
if not default_selected:
|
||||
stanza['default'] = True
|
||||
default_selected = True
|
||||
conf[model] = stanza
|
||||
return OmegaConf.to_yaml(conf)
|
||||
|
||||
#---------------------------------------------
|
||||
# this will preload the Bert tokenizer fles
|
||||
def download_bert():
|
||||
@ -66,7 +306,6 @@ def download_gfpgan():
|
||||
print(traceback.format_exc())
|
||||
|
||||
print('Loading models from GFPGAN')
|
||||
import urllib.request
|
||||
for model in (
|
||||
[
|
||||
'https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth',
|
||||
@ -152,6 +391,15 @@ def download_safety_checker():
|
||||
|
||||
#-------------------------------------
|
||||
if __name__ == '__main__':
|
||||
introduction()
|
||||
if user_wants_to_download_weights():
|
||||
models = select_datasets()
|
||||
if models is None:
|
||||
if yes_or_no('Quit?',default_yes=False):
|
||||
sys.exit(0)
|
||||
access_token = authenticate()
|
||||
successfully_downloaded = download_weight_datasets(models, access_token)
|
||||
update_config_file(successfully_downloaded)
|
||||
download_bert()
|
||||
download_kornia()
|
||||
download_clip()
|
||||
|
Reference in New Issue
Block a user