mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
migrate to new HF diffusers cache location
This commit is contained in:
parent
7cf2f58513
commit
ef8cf83b28
@ -295,7 +295,7 @@ def download_vaes():
|
|||||||
# first the diffusers version
|
# first the diffusers version
|
||||||
repo_id = "stabilityai/sd-vae-ft-mse"
|
repo_id = "stabilityai/sd-vae-ft-mse"
|
||||||
args = dict(
|
args = dict(
|
||||||
cache_dir=global_cache_dir("diffusers"),
|
cache_dir=global_cache_dir("hub"),
|
||||||
)
|
)
|
||||||
if not AutoencoderKL.from_pretrained(repo_id, **args):
|
if not AutoencoderKL.from_pretrained(repo_id, **args):
|
||||||
raise Exception(f"download of {repo_id} failed")
|
raise Exception(f"download of {repo_id} failed")
|
||||||
|
@ -98,16 +98,13 @@ def global_cache_dir(subdir: Union[str, Path] = "") -> Path:
|
|||||||
"""
|
"""
|
||||||
Returns Path to the model cache directory. If a subdirectory
|
Returns Path to the model cache directory. If a subdirectory
|
||||||
is provided, it will be appended to the end of the path, allowing
|
is provided, it will be appended to the end of the path, allowing
|
||||||
for huggingface-style conventions:
|
for huggingface-style conventions. Currently, hugging face has
|
||||||
global_cache_dir('diffusers')
|
moved all models into the "hub" subfolder, so for any pretrained
|
||||||
|
HF model, use:
|
||||||
global_cache_dir('hub')
|
global_cache_dir('hub')
|
||||||
Current HuggingFace documentation (mid-Jan 2023) indicates that
|
|
||||||
transformers models will be cached into a "transformers" subdirectory,
|
The legacy location for transformers used to be global_cache_dir('transformers')
|
||||||
but in practice they seem to go into "hub". But if needed:
|
and global_cache_dir('diffusers') for diffusers.
|
||||||
global_cache_dir('transformers')
|
|
||||||
One other caveat is that HuggingFace is moving some diffusers models
|
|
||||||
into the "hub" subdirectory as well, so this will need to be revisited
|
|
||||||
from time to time.
|
|
||||||
"""
|
"""
|
||||||
home: str = os.getenv("HF_HOME")
|
home: str = os.getenv("HF_HOME")
|
||||||
|
|
||||||
|
@ -43,13 +43,11 @@ class SDLegacyType(Enum):
|
|||||||
V2 = 3
|
V2 = 3
|
||||||
UNKNOWN = 99
|
UNKNOWN = 99
|
||||||
|
|
||||||
|
|
||||||
DEFAULT_MAX_MODELS = 2
|
DEFAULT_MAX_MODELS = 2
|
||||||
VAE_TO_REPO_ID = { # hack, see note in convert_and_import()
|
VAE_TO_REPO_ID = { # hack, see note in convert_and_import()
|
||||||
"vae-ft-mse-840000-ema-pruned": "stabilityai/sd-vae-ft-mse",
|
"vae-ft-mse-840000-ema-pruned": "stabilityai/sd-vae-ft-mse",
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
class ModelManager(object):
|
class ModelManager(object):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
@ -369,7 +367,7 @@ class ModelManager(object):
|
|||||||
if vae := self._load_vae(mconfig["vae"]):
|
if vae := self._load_vae(mconfig["vae"]):
|
||||||
pipeline_args.update(vae=vae)
|
pipeline_args.update(vae=vae)
|
||||||
if not isinstance(name_or_path, Path):
|
if not isinstance(name_or_path, Path):
|
||||||
pipeline_args.update(cache_dir=global_cache_dir("diffusers"))
|
pipeline_args.update(cache_dir=global_cache_dir("hub"))
|
||||||
if using_fp16:
|
if using_fp16:
|
||||||
pipeline_args.update(torch_dtype=torch.float16)
|
pipeline_args.update(torch_dtype=torch.float16)
|
||||||
fp_args_list = [{"revision": "fp16"}, {}]
|
fp_args_list = [{"revision": "fp16"}, {}]
|
||||||
@ -916,25 +914,30 @@ class ModelManager(object):
|
|||||||
to the 2.3.0 "diffusers" version. This should be a one-time operation, called at
|
to the 2.3.0 "diffusers" version. This should be a one-time operation, called at
|
||||||
script startup time.
|
script startup time.
|
||||||
"""
|
"""
|
||||||
# Three transformer models to check: bert, clip and safety checker
|
# Three transformer models to check: bert, clip and safety checker, and
|
||||||
|
# the diffusers as well
|
||||||
|
models_dir = Path(Globals.root, "models")
|
||||||
legacy_locations = [
|
legacy_locations = [
|
||||||
Path(
|
Path(
|
||||||
|
models_dir,
|
||||||
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker"
|
"CompVis/stable-diffusion-safety-checker/models--CompVis--stable-diffusion-safety-checker"
|
||||||
),
|
),
|
||||||
Path("bert-base-uncased/models--bert-base-uncased"),
|
Path(models_dir, "bert-base-uncased/models--bert-base-uncased"),
|
||||||
Path(
|
Path(
|
||||||
|
models_dir,
|
||||||
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14"
|
"openai/clip-vit-large-patch14/models--openai--clip-vit-large-patch14"
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
models_dir = Path(Globals.root, "models")
|
legacy_locations.extend(list(Path(models_dir,"diffusers").glob('*')))
|
||||||
|
|
||||||
legacy_layout = False
|
legacy_layout = False
|
||||||
for model in legacy_locations:
|
for model in legacy_locations:
|
||||||
legacy_layout = legacy_layout or Path(models_dir, model).exists()
|
legacy_layout = legacy_layout or model.exists()
|
||||||
if not legacy_layout:
|
if not legacy_layout:
|
||||||
return
|
return
|
||||||
|
|
||||||
print(
|
print(
|
||||||
"** Legacy version <= 2.2.5 model directory layout detected. Reorganizing."
|
"** Old model directory layout (< v3.0) detected. Reorganizing."
|
||||||
)
|
)
|
||||||
print("** This is a quick one-time operation.")
|
print("** This is a quick one-time operation.")
|
||||||
|
|
||||||
@ -948,6 +951,8 @@ class ModelManager(object):
|
|||||||
for model in legacy_locations:
|
for model in legacy_locations:
|
||||||
source = models_dir / model
|
source = models_dir / model
|
||||||
dest = hub / model.stem
|
dest = hub / model.stem
|
||||||
|
if dest.exists() and not source.exists():
|
||||||
|
continue
|
||||||
print(f"** {source} => {dest}")
|
print(f"** {source} => {dest}")
|
||||||
if source.exists():
|
if source.exists():
|
||||||
if dest.exists():
|
if dest.exists():
|
||||||
@ -955,26 +960,6 @@ class ModelManager(object):
|
|||||||
else:
|
else:
|
||||||
move(source, dest)
|
move(source, dest)
|
||||||
|
|
||||||
# anything else gets moved into the diffusers directory
|
|
||||||
if cls._is_huggingface_hub_directory_present():
|
|
||||||
diffusers = global_cache_dir("diffusers")
|
|
||||||
else:
|
|
||||||
diffusers = models_dir / "diffusers"
|
|
||||||
|
|
||||||
os.makedirs(diffusers, exist_ok=True)
|
|
||||||
for root, dirs, _ in os.walk(models_dir, topdown=False):
|
|
||||||
for dir in dirs:
|
|
||||||
full_path = Path(root, dir)
|
|
||||||
if full_path.is_relative_to(hub) or full_path.is_relative_to(diffusers):
|
|
||||||
continue
|
|
||||||
if Path(dir).match("models--*--*"):
|
|
||||||
dest = diffusers / dir
|
|
||||||
print(f"** {full_path} => {dest}")
|
|
||||||
if dest.exists():
|
|
||||||
rmtree(full_path)
|
|
||||||
else:
|
|
||||||
move(full_path, dest)
|
|
||||||
|
|
||||||
# now clean up by removing any empty directories
|
# now clean up by removing any empty directories
|
||||||
empty = [
|
empty = [
|
||||||
root
|
root
|
||||||
@ -1072,7 +1057,7 @@ class ModelManager(object):
|
|||||||
path = name_or_path
|
path = name_or_path
|
||||||
else:
|
else:
|
||||||
owner, repo = name_or_path.split("/")
|
owner, repo = name_or_path.split("/")
|
||||||
path = Path(global_cache_dir("diffusers") / f"models--{owner}--{repo}")
|
path = Path(global_cache_dir("hub") / f"models--{owner}--{repo}")
|
||||||
if not path.exists():
|
if not path.exists():
|
||||||
return None
|
return None
|
||||||
hashpath = path / "checksum.sha256"
|
hashpath = path / "checksum.sha256"
|
||||||
@ -1133,7 +1118,7 @@ class ModelManager(object):
|
|||||||
using_fp16 = self.precision == "float16"
|
using_fp16 = self.precision == "float16"
|
||||||
|
|
||||||
vae_args.update(
|
vae_args.update(
|
||||||
cache_dir=global_cache_dir("diffusers"),
|
cache_dir=global_cache_dir("hub"),
|
||||||
local_files_only=not Globals.internet_available,
|
local_files_only=not Globals.internet_available,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -1172,7 +1157,7 @@ class ModelManager(object):
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _delete_model_from_cache(repo_id):
|
def _delete_model_from_cache(repo_id):
|
||||||
cache_info = scan_cache_dir(global_cache_dir("diffusers"))
|
cache_info = scan_cache_dir(global_cache_dir("hub"))
|
||||||
|
|
||||||
# I'm sure there is a way to do this with comprehensions
|
# I'm sure there is a way to do this with comprehensions
|
||||||
# but the code quickly became incomprehensible!
|
# but the code quickly became incomprehensible!
|
||||||
|
@ -640,7 +640,7 @@ def do_textual_inversion_training(
|
|||||||
assert (
|
assert (
|
||||||
pretrained_model_name_or_path
|
pretrained_model_name_or_path
|
||||||
), f"models.yaml error: neither 'repo_id' nor 'path' is defined for {model}"
|
), f"models.yaml error: neither 'repo_id' nor 'path' is defined for {model}"
|
||||||
pipeline_args = dict(cache_dir=global_cache_dir("diffusers"))
|
pipeline_args = dict(cache_dir=global_cache_dir("hub"))
|
||||||
|
|
||||||
# Load tokenizer
|
# Load tokenizer
|
||||||
if tokenizer_name:
|
if tokenizer_name:
|
||||||
|
@ -442,7 +442,7 @@ def main():
|
|||||||
args = _parse_args()
|
args = _parse_args()
|
||||||
global_set_root(args.root_dir)
|
global_set_root(args.root_dir)
|
||||||
|
|
||||||
cache_dir = str(global_cache_dir("diffusers"))
|
cache_dir = str(global_cache_dir("hub"))
|
||||||
os.environ[
|
os.environ[
|
||||||
"HF_HOME"
|
"HF_HOME"
|
||||||
] = cache_dir # because not clear the merge pipeline is honoring cache_dir
|
] = cache_dir # because not clear the merge pipeline is honoring cache_dir
|
||||||
|
Loading…
x
Reference in New Issue
Block a user