Merge branch 'development' into sync-dev-with-main

This commit is contained in:
Lincoln Stein 2022-11-13 21:51:17 +00:00
commit f04d1bab21
10 changed files with 271 additions and 266 deletions

View File

@ -65,14 +65,11 @@ requests. Be sure to use the provided templates. They will help aid diagnose iss
### Installation ### Installation
This fork is supported across multiple platforms. You can find individual installation instructions This fork is supported across Linux, Windows and Macintosh. Linux
below. users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver). For full installation and upgrade
- #### [Linux](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_LINUX/) instructions, please see:
[InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/)
- #### [Windows](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_WINDOWS/)
- #### [Macintosh](https://invoke-ai.github.io/InvokeAI/installation/INSTALL_MAC/)
### Hardware Requirements ### Hardware Requirements

View File

@ -30,7 +30,7 @@ model:
target: ldm.modules.embedding_manager.EmbeddingManager target: ldm.modules.embedding_manager.EmbeddingManager
params: params:
placeholder_strings: ["*"] placeholder_strings: ["*"]
initializer_words: ['face', 'man', 'photo', 'africanmale'] initializer_words: ['sculpture']
per_image_tokens: false per_image_tokens: false
num_vectors_per_token: 1 num_vectors_per_token: 1
progressive_words: False progressive_words: False

View File

@ -30,7 +30,7 @@ model:
target: ldm.modules.embedding_manager.EmbeddingManager target: ldm.modules.embedding_manager.EmbeddingManager
params: params:
placeholder_strings: ["*"] placeholder_strings: ["*"]
initializer_words: ['face', 'man', 'photo', 'africanmale'] initializer_words: ['sculpture']
per_image_tokens: false per_image_tokens: false
num_vectors_per_token: 1 num_vectors_per_token: 1
progressive_words: False progressive_words: False

View File

@ -22,7 +22,7 @@ model:
target: ldm.modules.embedding_manager.EmbeddingManager target: ldm.modules.embedding_manager.EmbeddingManager
params: params:
placeholder_strings: ["*"] placeholder_strings: ["*"]
initializer_words: ['face', 'man', 'photo', 'africanmale'] initializer_words: ['sculpture']
per_image_tokens: false per_image_tokens: false
num_vectors_per_token: 6 num_vectors_per_token: 6
progressive_words: False progressive_words: False

View File

@ -80,12 +80,11 @@ Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM.
## :octicons-package-dependencies-24: Installation ## :octicons-package-dependencies-24: Installation
This fork is supported across multiple platforms. You can find individual This fork is supported across Linux, Windows and Macintosh. Linux
installation instructions below. users can use either an Nvidia-based card (with CUDA support) or an
AMD card (using the ROCm driver). For full installation and upgrade
- :fontawesome-brands-linux: [Linux](installation/INSTALL_LINUX.md) instructions, please see:
- :fontawesome-brands-windows: [Windows](installation/INSTALL_WINDOWS.md) [InvokeAI Installation Overview](https://invoke-ai.github.io/InvokeAI/installation/)
- :fontawesome-brands-apple: [Macintosh](installation/INSTALL_MAC.md)
## :fontawesome-solid-computer: Hardware Requirements ## :fontawesome-solid-computer: Hardware Requirements
@ -123,6 +122,14 @@ You wil need one of the following:
## :octicons-log-16: Latest Changes ## :octicons-log-16: Latest Changes
### v2.1.3 <small>(13 November 2022)</small>
- A choice of installer scripts that automate installation and configuration. See [Installation](https://github.com/invoke-ai/InvokeAI/blob/2.1.3-rc6/docs/installation/INSTALL.md).
- A streamlined manual installation process that works for both Conda and PIP-only installs. See [Manual Installation](https://github.com/invoke-ai/InvokeAI/blob/2.1.3-rc6/docs/installation/INSTALL_MANUAL.md).
- The ability to save frequently-used startup options (model to load, steps, sampler, etc) in a `.invokeai` file. See [Client](https://github.com/invoke-ai/InvokeAI/blob/2.1.3-rc6/docs/features/CLI.md)
- Support for AMD GPU cards (non-CUDA) on Linux machines.
- Multiple bugs and edge cases squashed.
### v2.1.0 <small>(2 November 2022)</small> ### v2.1.0 <small>(2 November 2022)</small>
- [Inpainting](https://invoke-ai.github.io/InvokeAI/features/INPAINTING/) - [Inpainting](https://invoke-ai.github.io/InvokeAI/features/INPAINTING/)

View File

@ -19,7 +19,7 @@ set INSTALL_ENV_DIR=%cd%\installer_files\env
@rem https://mamba.readthedocs.io/en/latest/installation.html @rem https://mamba.readthedocs.io/en/latest/installation.html
set MICROMAMBA_DOWNLOAD_URL=https://github.com/cmdr2/stable-diffusion-ui/releases/download/v1.1/micromamba.exe set MICROMAMBA_DOWNLOAD_URL=https://github.com/cmdr2/stable-diffusion-ui/releases/download/v1.1/micromamba.exe
set RELEASE_URL=https://github.com/invoke-ai/InvokeAI set RELEASE_URL=https://github.com/invoke-ai/InvokeAI
set RELEASE_SOURCEBALL=/archive/refs/heads/v2.1.3.tar.gz set RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
set PYTHON_BUILD_STANDALONE_URL=https://github.com/indygreg/python-build-standalone/releases/download set PYTHON_BUILD_STANDALONE_URL=https://github.com/indygreg/python-build-standalone/releases/download
set PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-x86_64-pc-windows-msvc-shared-install_only.tar.gz set PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-x86_64-pc-windows-msvc-shared-install_only.tar.gz

View File

@ -74,7 +74,7 @@ fi
INSTALL_ENV_DIR="$(pwd)/installer_files/env" INSTALL_ENV_DIR="$(pwd)/installer_files/env"
MICROMAMBA_DOWNLOAD_URL="https://micro.mamba.pm/api/micromamba/${MAMBA_OS_NAME}-${MAMBA_ARCH}/latest" MICROMAMBA_DOWNLOAD_URL="https://micro.mamba.pm/api/micromamba/${MAMBA_OS_NAME}-${MAMBA_ARCH}/latest"
RELEASE_URL=https://github.com/invoke-ai/InvokeAI RELEASE_URL=https://github.com/invoke-ai/InvokeAI
RELEASE_SOURCEBALL=/archive/refs/heads/v2.1.3.tar.gz RELEASE_SOURCEBALL=/archive/refs/heads/main.tar.gz
PYTHON_BUILD_STANDALONE_URL=https://github.com/indygreg/python-build-standalone/releases/download PYTHON_BUILD_STANDALONE_URL=https://github.com/indygreg/python-build-standalone/releases/download
if [ "$OS_NAME" == "darwin" ]; then if [ "$OS_NAME" == "darwin" ]; then
PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-${PY_ARCH}-apple-darwin-install_only.tar.gz PYTHON_BUILD_STANDALONE=20221002/cpython-3.10.7+20221002-${PY_ARCH}-apple-darwin-install_only.tar.gz

View File

@ -14,7 +14,7 @@ import torch
from .prompt_parser import PromptParser, Blend, FlattenedPrompt, \ from .prompt_parser import PromptParser, Blend, FlattenedPrompt, \
CrossAttentionControlledFragment, CrossAttentionControlSubstitute, Fragment, log_tokenization CrossAttentionControlledFragment, CrossAttentionControlSubstitute, Fragment, log_tokenization
from ..models.diffusion.cross_attention_control import CrossAttentionControl from ..models.diffusion import cross_attention_control
from ..models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent from ..models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
from ..modules.encoders.modules import WeightedFrozenCLIPEmbedder from ..modules.encoders.modules import WeightedFrozenCLIPEmbedder
@ -49,7 +49,7 @@ def get_uc_and_c_and_ec(prompt_string_uncleaned, model, log_tokens=False, skip_n
parsed_negative_prompt: FlattenedPrompt = pp.parse_conjunction(unconditioned_words).prompts[0] parsed_negative_prompt: FlattenedPrompt = pp.parse_conjunction(unconditioned_words).prompts[0]
conditioning = None conditioning = None
cac_args:CrossAttentionControl.Arguments = None cac_args:cross_attention_control.Arguments = None
if type(parsed_prompt) is Blend: if type(parsed_prompt) is Blend:
blend: Blend = parsed_prompt blend: Blend = parsed_prompt
@ -120,7 +120,7 @@ def get_uc_and_c_and_ec(prompt_string_uncleaned, model, log_tokens=False, skip_n
conditioning = original_embeddings conditioning = original_embeddings
edited_conditioning = edited_embeddings edited_conditioning = edited_embeddings
#print('>> got edit_opcodes', edit_opcodes, 'options', edit_options) #print('>> got edit_opcodes', edit_opcodes, 'options', edit_options)
cac_args = CrossAttentionControl.Arguments( cac_args = cross_attention_control.Arguments(
edited_conditioning = edited_conditioning, edited_conditioning = edited_conditioning,
edit_opcodes = edit_opcodes, edit_opcodes = edit_opcodes,
edit_options = edit_options edit_options = edit_options

View File

@ -7,9 +7,6 @@ import torch
# https://github.com/bloc97/CrossAttentionControl # https://github.com/bloc97/CrossAttentionControl
class CrossAttentionControl:
class Arguments: class Arguments:
def __init__(self, edited_conditioning: torch.Tensor, edit_opcodes: list[tuple], edit_options: dict): def __init__(self, edited_conditioning: torch.Tensor, edit_opcodes: list[tuple], edit_options: dict):
""" """
@ -31,18 +28,30 @@ class CrossAttentionControl:
self.edit_options = non_none_edit_options[0] self.edit_options = non_none_edit_options[0]
class CrossAttentionType(enum.Enum):
SELF = 1
TOKENS = 2
class Context: class Context:
cross_attention_mask: Optional[torch.Tensor]
cross_attention_index_map: Optional[torch.Tensor]
class Action(enum.Enum): class Action(enum.Enum):
NONE = 0 NONE = 0
SAVE = 1, SAVE = 1,
APPLY = 2 APPLY = 2
def __init__(self, arguments: 'CrossAttentionControl.Arguments', step_count: int): def __init__(self, arguments: Arguments, step_count: int):
""" """
:param arguments: Arguments for the cross-attention control process :param arguments: Arguments for the cross-attention control process
:param step_count: The absolute total number of steps of diffusion (for img2img this is likely larger than the number of steps that will actually run) :param step_count: The absolute total number of steps of diffusion (for img2img this is likely larger than the number of steps that will actually run)
""" """
self.cross_attention_mask = None
self.cross_attention_index_map = None
self.self_cross_attention_action = Context.Action.NONE
self.tokens_cross_attention_action = Context.Action.NONE
self.arguments = arguments self.arguments = arguments
self.step_count = step_count self.step_count = step_count
@ -54,58 +63,56 @@ class CrossAttentionControl:
self.clear_requests(cleanup=True) self.clear_requests(cleanup=True)
def register_cross_attention_modules(self, model): def register_cross_attention_modules(self, model):
for name,module in CrossAttentionControl.get_attention_modules(model, for name,module in get_attention_modules(model, CrossAttentionType.SELF):
CrossAttentionControl.CrossAttentionType.SELF):
self.self_cross_attention_module_identifiers.append(name) self.self_cross_attention_module_identifiers.append(name)
for name,module in CrossAttentionControl.get_attention_modules(model, for name,module in get_attention_modules(model, CrossAttentionType.TOKENS):
CrossAttentionControl.CrossAttentionType.TOKENS):
self.tokens_cross_attention_module_identifiers.append(name) self.tokens_cross_attention_module_identifiers.append(name)
def request_save_attention_maps(self, cross_attention_type: 'CrossAttentionControl.CrossAttentionType'): def request_save_attention_maps(self, cross_attention_type: CrossAttentionType):
if cross_attention_type == CrossAttentionControl.CrossAttentionType.SELF: if cross_attention_type == CrossAttentionType.SELF:
self.self_cross_attention_action = CrossAttentionControl.Context.Action.SAVE self.self_cross_attention_action = Context.Action.SAVE
else: else:
self.tokens_cross_attention_action = CrossAttentionControl.Context.Action.SAVE self.tokens_cross_attention_action = Context.Action.SAVE
def request_apply_saved_attention_maps(self, cross_attention_type: 'CrossAttentionControl.CrossAttentionType'): def request_apply_saved_attention_maps(self, cross_attention_type: CrossAttentionType):
if cross_attention_type == CrossAttentionControl.CrossAttentionType.SELF: if cross_attention_type == CrossAttentionType.SELF:
self.self_cross_attention_action = CrossAttentionControl.Context.Action.APPLY self.self_cross_attention_action = Context.Action.APPLY
else: else:
self.tokens_cross_attention_action = CrossAttentionControl.Context.Action.APPLY self.tokens_cross_attention_action = Context.Action.APPLY
def is_tokens_cross_attention(self, module_identifier) -> bool: def is_tokens_cross_attention(self, module_identifier) -> bool:
return module_identifier in self.tokens_cross_attention_module_identifiers return module_identifier in self.tokens_cross_attention_module_identifiers
def get_should_save_maps(self, module_identifier: str) -> bool: def get_should_save_maps(self, module_identifier: str) -> bool:
if module_identifier in self.self_cross_attention_module_identifiers: if module_identifier in self.self_cross_attention_module_identifiers:
return self.self_cross_attention_action == CrossAttentionControl.Context.Action.SAVE return self.self_cross_attention_action == Context.Action.SAVE
elif module_identifier in self.tokens_cross_attention_module_identifiers: elif module_identifier in self.tokens_cross_attention_module_identifiers:
return self.tokens_cross_attention_action == CrossAttentionControl.Context.Action.SAVE return self.tokens_cross_attention_action == Context.Action.SAVE
return False return False
def get_should_apply_saved_maps(self, module_identifier: str) -> bool: def get_should_apply_saved_maps(self, module_identifier: str) -> bool:
if module_identifier in self.self_cross_attention_module_identifiers: if module_identifier in self.self_cross_attention_module_identifiers:
return self.self_cross_attention_action == CrossAttentionControl.Context.Action.APPLY return self.self_cross_attention_action == Context.Action.APPLY
elif module_identifier in self.tokens_cross_attention_module_identifiers: elif module_identifier in self.tokens_cross_attention_module_identifiers:
return self.tokens_cross_attention_action == CrossAttentionControl.Context.Action.APPLY return self.tokens_cross_attention_action == Context.Action.APPLY
return False return False
def get_active_cross_attention_control_types_for_step(self, percent_through:float=None)\ def get_active_cross_attention_control_types_for_step(self, percent_through:float=None)\
-> list['CrossAttentionControl.CrossAttentionType']: -> list[CrossAttentionType]:
""" """
Should cross-attention control be applied on the given step? Should cross-attention control be applied on the given step?
:param percent_through: How far through the step sequence are we (0.0=pure noise, 1.0=completely denoised image). Expected range 0.0..<1.0. :param percent_through: How far through the step sequence are we (0.0=pure noise, 1.0=completely denoised image). Expected range 0.0..<1.0.
:return: A list of attention types that cross-attention control should be performed for on the given step. May be []. :return: A list of attention types that cross-attention control should be performed for on the given step. May be [].
""" """
if percent_through is None: if percent_through is None:
return [CrossAttentionControl.CrossAttentionType.SELF, CrossAttentionControl.CrossAttentionType.TOKENS] return [CrossAttentionType.SELF, CrossAttentionType.TOKENS]
opts = self.arguments.edit_options opts = self.arguments.edit_options
to_control = [] to_control = []
if opts['s_start'] <= percent_through and percent_through < opts['s_end']: if opts['s_start'] <= percent_through < opts['s_end']:
to_control.append(CrossAttentionControl.CrossAttentionType.SELF) to_control.append(CrossAttentionType.SELF)
if opts['t_start'] <= percent_through and percent_through < opts['t_end']: if opts['t_start'] <= percent_through < opts['t_end']:
to_control.append(CrossAttentionControl.CrossAttentionType.TOKENS) to_control.append(CrossAttentionType.TOKENS)
return to_control return to_control
def save_slice(self, identifier: str, slice: torch.Tensor, dim: Optional[int], offset: int, def save_slice(self, identifier: str, slice: torch.Tensor, dim: Optional[int], offset: int,
@ -132,7 +139,7 @@ class CrossAttentionControl:
f"slice_size mismatch: expected slice_size={slice_size}, have {saved_attention_dict['slice_size']}") f"slice_size mismatch: expected slice_size={slice_size}, have {saved_attention_dict['slice_size']}")
return saved_attention_dict['slices'][requested_offset] return saved_attention_dict['slices'][requested_offset]
if saved_attention_dict['dim'] == None: if saved_attention_dict['dim'] is None:
whole_saved_attention = saved_attention_dict['slices'][0] whole_saved_attention = saved_attention_dict['slices'][0]
if requested_dim == 0: if requested_dim == 0:
return whole_saved_attention[requested_offset:requested_offset + slice_size] return whole_saved_attention[requested_offset:requested_offset + slice_size]
@ -141,15 +148,15 @@ class CrossAttentionControl:
raise RuntimeError(f"Cannot convert dim {saved_attention_dict['dim']} to requested dim {requested_dim}") raise RuntimeError(f"Cannot convert dim {saved_attention_dict['dim']} to requested dim {requested_dim}")
def get_slicing_strategy(self, identifier: str) -> Optional[tuple[int, int]]: def get_slicing_strategy(self, identifier: str) -> tuple[Optional[int], Optional[int]]:
saved_attention = self.saved_cross_attention_maps.get(identifier, None) saved_attention = self.saved_cross_attention_maps.get(identifier, None)
if saved_attention is None: if saved_attention is None:
return None, None return None, None
return saved_attention['dim'], saved_attention['slice_size'] return saved_attention['dim'], saved_attention['slice_size']
def clear_requests(self, cleanup=True): def clear_requests(self, cleanup=True):
self.tokens_cross_attention_action = CrossAttentionControl.Context.Action.NONE self.tokens_cross_attention_action = Context.Action.NONE
self.self_cross_attention_action = CrossAttentionControl.Context.Action.NONE self.self_cross_attention_action = Context.Action.NONE
if cleanup: if cleanup:
self.saved_cross_attention_maps = {} self.saved_cross_attention_maps = {}
@ -158,12 +165,12 @@ class CrossAttentionControl:
for offset, slice in map_dict['slices'].items(): for offset, slice in map_dict['slices'].items():
map_dict[offset] = slice.to('cpu') map_dict[offset] = slice.to('cpu')
@classmethod
def remove_cross_attention_control(cls, model):
cls.remove_attention_function(model)
@classmethod def remove_cross_attention_control(model):
def setup_cross_attention_control(cls, model, context: Context): remove_attention_function(model)
def setup_cross_attention_control(model, context: Context):
""" """
Inject attention parameters and functions into the passed in model to enable cross attention editing. Inject attention parameters and functions into the passed in model to enable cross attention editing.
@ -191,22 +198,16 @@ class CrossAttentionControl:
context.register_cross_attention_modules(model) context.register_cross_attention_modules(model)
context.cross_attention_mask = mask.to(device) context.cross_attention_mask = mask.to(device)
context.cross_attention_index_map = indices.to(device) context.cross_attention_index_map = indices.to(device)
cls.inject_attention_function(model, context) inject_attention_function(model, context)
class CrossAttentionType(enum.Enum): def get_attention_modules(model, which: CrossAttentionType):
SELF = 1 which_attn = "attn1" if which is CrossAttentionType.SELF else "attn2"
TOKENS = 2
@classmethod
def get_attention_modules(cls, model, which: CrossAttentionType):
which_attn = "attn1" if which is cls.CrossAttentionType.SELF else "attn2"
return [(name,module) for name, module in model.named_modules() if return [(name,module) for name, module in model.named_modules() if
type(module).__name__ == "CrossAttention" and which_attn in name] type(module).__name__ == "CrossAttention" and which_attn in name]
@classmethod def inject_attention_function(unet, context: Context):
def inject_attention_function(cls, unet, context: 'CrossAttentionControl.Context'):
# ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276 # ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276
def attention_slice_wrangler(module, suggested_attention_slice:torch.Tensor, dim, offset, slice_size): def attention_slice_wrangler(module, suggested_attention_slice:torch.Tensor, dim, offset, slice_size):
@ -251,12 +252,11 @@ class CrossAttentionControl:
module.set_slicing_strategy_getter(lambda module, module_identifier=name: \ module.set_slicing_strategy_getter(lambda module, module_identifier=name: \
context.get_slicing_strategy(module_identifier)) context.get_slicing_strategy(module_identifier))
@classmethod
def remove_attention_function(cls, unet): def remove_attention_function(unet):
# clear wrangler callback # clear wrangler callback
for name, module in unet.named_modules(): for name, module in unet.named_modules():
module_name = type(module).__name__ module_name = type(module).__name__
if module_name == "CrossAttention": if module_name == "CrossAttention":
module.set_attention_slice_wrangler(None) module.set_attention_slice_wrangler(None)
module.set_slicing_strategy_getter(None) module.set_slicing_strategy_getter(None)

View File

@ -4,7 +4,8 @@ from typing import Callable, Optional, Union
import torch import torch
from ldm.models.diffusion.cross_attention_control import CrossAttentionControl from ldm.models.diffusion.cross_attention_control import Arguments, \
remove_cross_attention_control, setup_cross_attention_control, Context
from ldm.modules.attention import get_mem_free_total from ldm.modules.attention import get_mem_free_total
@ -20,7 +21,7 @@ class InvokeAIDiffuserComponent:
class ExtraConditioningInfo: class ExtraConditioningInfo:
def __init__(self, cross_attention_control_args: Optional[CrossAttentionControl.Arguments]): def __init__(self, cross_attention_control_args: Optional[Arguments]):
self.cross_attention_control_args = cross_attention_control_args self.cross_attention_control_args = cross_attention_control_args
@property @property
@ -40,16 +41,16 @@ class InvokeAIDiffuserComponent:
def setup_cross_attention_control(self, conditioning: ExtraConditioningInfo, step_count: int): def setup_cross_attention_control(self, conditioning: ExtraConditioningInfo, step_count: int):
self.conditioning = conditioning self.conditioning = conditioning
self.cross_attention_control_context = CrossAttentionControl.Context( self.cross_attention_control_context = Context(
arguments=self.conditioning.cross_attention_control_args, arguments=self.conditioning.cross_attention_control_args,
step_count=step_count step_count=step_count
) )
CrossAttentionControl.setup_cross_attention_control(self.model, self.cross_attention_control_context) setup_cross_attention_control(self.model, self.cross_attention_control_context)
def remove_cross_attention_control(self): def remove_cross_attention_control(self):
self.conditioning = None self.conditioning = None
self.cross_attention_control_context = None self.cross_attention_control_context = None
CrossAttentionControl.remove_cross_attention_control(self.model) remove_cross_attention_control(self.model)
@ -71,7 +72,7 @@ class InvokeAIDiffuserComponent:
cross_attention_control_types_to_do = [] cross_attention_control_types_to_do = []
context: CrossAttentionControl.Context = self.cross_attention_control_context context: Context = self.cross_attention_control_context
if self.cross_attention_control_context is not None: if self.cross_attention_control_context is not None:
percent_through = self.estimate_percent_through(step_index, sigma) percent_through = self.estimate_percent_through(step_index, sigma)
cross_attention_control_types_to_do = context.get_active_cross_attention_control_types_for_step(percent_through) cross_attention_control_types_to_do = context.get_active_cross_attention_control_types_for_step(percent_through)
@ -133,7 +134,7 @@ class InvokeAIDiffuserComponent:
# representing batched uncond + cond, but then when it comes to applying the saved attention, the # representing batched uncond + cond, but then when it comes to applying the saved attention, the
# wrangler gets an attention tensor which only has shape[0]=8, representing just self.edited_conditionings.) # wrangler gets an attention tensor which only has shape[0]=8, representing just self.edited_conditionings.)
# todo: give CrossAttentionControl's `wrangler` function more info so it can work with a batched call as well. # todo: give CrossAttentionControl's `wrangler` function more info so it can work with a batched call as well.
context:CrossAttentionControl.Context = self.cross_attention_control_context context:Context = self.cross_attention_control_context
try: try:
unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning) unconditioned_next_x = self.model_forward_callback(x, sigma, unconditioning)