feat(nodes): redo tile infill

The previous algorithm errored if the image wasn't divisible by the tile size. I've reimplemented it from scratch to mitigate this issue.

The new algorithm is simpler. We create a pool of tiles, then use them to create an image composed completely of tiles. If there is any awkwardly sized space on the edge of the image, the tiles are cropped to fit.

Finally, paste the original image over the tile image.

I've added a jupyter notebook to do a smoke test of infilling methods, and 10 test images.

The other infill algorithms can be easily tested with the notebook on the same images, though I didn't set that up yet.

Tested and confirmed this gives results just as good as the earlier infill, though of course they aren't the same due to the change in the algorithm.
This commit is contained in:
psychedelicious 2024-04-04 21:45:05 +11:00
parent b061db414f
commit f0b1bb0327
13 changed files with 207 additions and 63 deletions

View File

@ -95,9 +95,8 @@ class InfillTileInvocation(InfillImageProcessorInvocation):
)
def infill(self, image: Image.Image):
infilled = infill_tile(image, seed=self.seed, tile_size=self.tile_size)
infilled.paste(image, (0, 0), image.split()[-1])
return infilled
output = infill_tile(image, seed=self.seed, tile_size=self.tile_size)
return output.infilled
@invocation(

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

View File

@ -0,0 +1,95 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\"\"\"Smoke test for the tile infill\"\"\"\n",
"\n",
"from pathlib import Path\n",
"from typing import Optional\n",
"from PIL import Image\n",
"from invokeai.backend.image_util.infill_methods.tile import infill_tile\n",
"\n",
"images: list[tuple[str, Image.Image]] = []\n",
"\n",
"for i in sorted(Path(\"./test_images/\").glob(\"*.webp\")):\n",
" images.append((i.name, Image.open(i)))\n",
" images.append((i.name, Image.open(i).transpose(Image.FLIP_LEFT_RIGHT)))\n",
" images.append((i.name, Image.open(i).transpose(Image.FLIP_TOP_BOTTOM)))\n",
" images.append((i.name, Image.open(i).resize((512, 512))))\n",
" images.append((i.name, Image.open(i).resize((1234, 461))))\n",
"\n",
"outputs: list[tuple[str, Image.Image, Image.Image, Optional[Image.Image]]] = []\n",
"\n",
"for name, image in images:\n",
" try:\n",
" output = infill_tile(image, seed=0, tile_size=32)\n",
" outputs.append((name, image, output.infilled, output.tile_image))\n",
" except ValueError as e:\n",
" print(f\"Skipping image {name}: {e}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Display the images in jupyter notebook\n",
"import matplotlib.pyplot as plt\n",
"from PIL import ImageOps\n",
"\n",
"fig, axes = plt.subplots(len(outputs), 3, figsize=(10, 3 * len(outputs)))\n",
"plt.subplots_adjust(hspace=0)\n",
"\n",
"for i, (name, original, infilled, tile_image) in enumerate(outputs):\n",
" # Add a border to each image, helps to see the edges\n",
" size = original.size\n",
" original = ImageOps.expand(original, border=5, fill=\"red\")\n",
" filled = ImageOps.expand(infilled, border=5, fill=\"red\")\n",
" if tile_image:\n",
" tile_image = ImageOps.expand(tile_image, border=5, fill=\"red\")\n",
"\n",
" axes[i, 0].imshow(original)\n",
" axes[i, 0].axis(\"off\")\n",
" axes[i, 0].set_title(f\"Original ({name} - {size})\")\n",
"\n",
" if tile_image:\n",
" axes[i, 1].imshow(tile_image)\n",
" axes[i, 1].axis(\"off\")\n",
" axes[i, 1].set_title(\"Tile Image\")\n",
" else:\n",
" axes[i, 1].axis(\"off\")\n",
" axes[i, 1].set_title(\"NO TILES GENERATED (NO TRANSPARENCY)\")\n",
"\n",
" axes[i, 2].imshow(filled)\n",
" axes[i, 2].axis(\"off\")\n",
" axes[i, 2].set_title(\"Filled\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".invokeai",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

View File

@ -1,72 +1,122 @@
import math
from dataclasses import dataclass
from typing import Optional
import numpy as np
from PIL import Image
def get_tile_images(image: np.ndarray, width: int = 8, height: int = 8):
_nrows, _ncols, depth = image.shape
_strides = image.strides
def create_tile_pool(img_array: np.ndarray, tile_size: tuple[int, int]) -> list[np.ndarray]:
"""
Create a pool of tiles from non-transparent areas of the image by systematically walking through the image.
nrows, _m = divmod(_nrows, height)
ncols, _n = divmod(_ncols, width)
if _m != 0 or _n != 0:
return None
Args:
img_array: numpy array of the image.
tile_size: tuple (tile_width, tile_height) specifying the size of each tile.
return np.lib.stride_tricks.as_strided(
np.ravel(image),
shape=(nrows, ncols, height, width, depth),
strides=(height * _strides[0], width * _strides[1], *_strides),
writeable=False,
Returns:
A list of numpy arrays, each representing a tile.
"""
tiles: list[np.ndarray] = []
rows, cols = img_array.shape[:2]
tile_width, tile_height = tile_size
for y in range(0, rows - tile_height + 1, tile_height):
for x in range(0, cols - tile_width + 1, tile_width):
tile = img_array[y : y + tile_height, x : x + tile_width]
# Check if the image has an alpha channel and the tile is completely opaque
if img_array.shape[2] == 4 and np.all(tile[:, :, 3] == 255):
tiles.append(tile)
elif img_array.shape[2] == 3: # If no alpha channel, append the tile
tiles.append(tile)
if not tiles:
raise ValueError(
"Not enough opaque pixels to generate any tiles. Use a smaller tile size or a different image."
)
return tiles
def infill_tile(im: Image.Image, tile_size: int = 16, seed: Optional[int] = None) -> Image.Image:
# Only fill if there's an alpha layer
if im.mode != "RGBA":
return im
a = np.asarray(im, dtype=np.uint8)
def create_filled_image(
img_array: np.ndarray, tile_pool: list[np.ndarray], tile_size: tuple[int, int], seed: int
) -> np.ndarray:
"""
Create an image of the same dimensions as the original, filled entirely with tiles from the pool.
tile_size_tuple = (tile_size, tile_size)
Args:
img_array: numpy array of the original image.
tile_pool: A list of numpy arrays, each representing a tile.
tile_size: tuple (tile_width, tile_height) specifying the size of each tile.
# Get the image as tiles of a specified size
tiles = get_tile_images(a, *tile_size_tuple).copy()
Returns:
A numpy array representing the filled image.
"""
# Get the mask as tiles
tiles_mask = tiles[:, :, :, :, 3]
rows, cols, _ = img_array.shape
tile_width, tile_height = tile_size
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
tmask_shape = tiles_mask.shape
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
n, ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
tiles_mask = tiles_mask > 0
tiles_mask = tiles_mask.reshape((n, ny)).all(axis=1)
# Prep an empty RGB image
filled_img_array = np.zeros((rows, cols, 3), dtype=img_array.dtype)
# Get RGB tiles in single array and filter by the mask
tshape = tiles.shape
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), *tiles.shape[2:]))
filtered_tiles = tiles_all[tiles_mask]
# Make the random tile selection reproducible
rng = np.random.default_rng(seed)
if len(filtered_tiles) == 0:
return im
for y in range(0, rows, tile_height):
for x in range(0, cols, tile_width):
# Pick a random tile from the pool
tile = tile_pool[rng.integers(len(tile_pool))]
# Find all invalid tiles and replace with a random valid tile
replace_count = (tiles_mask == False).sum() # noqa: E712
rng = np.random.default_rng(seed=seed)
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count), :, :, :]
# Calculate the space available (may be less than tile size near the edges)
space_y = min(tile_height, rows - y)
space_x = min(tile_width, cols - x)
# Convert back to an image
tiles_all = tiles_all.reshape(tshape)
tiles_all = tiles_all.swapaxes(1, 2)
st = tiles_all.reshape(
(
math.prod(tiles_all.shape[0:2]),
math.prod(tiles_all.shape[2:4]),
tiles_all.shape[4],
)
)
si = Image.fromarray(st, mode="RGBA")
# Crop the tile if necessary to fit into the available space
cropped_tile = tile[:space_y, :space_x, :3]
return si
# Fill the available space with the (possibly cropped) tile
filled_img_array[y : y + space_y, x : x + space_x, :3] = cropped_tile
return filled_img_array
@dataclass
class InfillTileOutput:
infilled: Image.Image
tile_image: Optional[Image.Image] = None
def infill_tile(image_to_infill: Image.Image, seed: int, tile_size: int) -> InfillTileOutput:
"""Infills an image with random tiles from the image itself.
If the image is not an RGBA image, it is returned untouched.
Args:
image: The image to infill.
tile_size: The size of the tiles to use for infilling.
Raises:
ValueError: If there are not enough opaque pixels to generate any tiles.
"""
if image_to_infill.mode != "RGBA":
return InfillTileOutput(infilled=image_to_infill)
# Internally, we want a tuple of (tile_width, tile_height). In the future, the tile size can be any rectangle.
_tile_size = (tile_size, tile_size)
np_image = np.array(image_to_infill, dtype=np.uint8)
# Create the pool of tiles that we will use to infill
tile_pool = create_tile_pool(np_image, _tile_size)
# Create an image from the tiles, same size as the original
tile_np_image = create_filled_image(np_image, tile_pool, _tile_size, seed)
# Paste the OG image over the tile image, effectively infilling the area
tile_image = Image.fromarray(tile_np_image, "RGB")
infilled = tile_image.copy()
infilled.paste(image_to_infill, (0, 0), image_to_infill.split()[-1])
# I think we want this to be "RGBA"?
infilled.convert("RGBA")
return InfillTileOutput(infilled=infilled, tile_image=tile_image)