mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
tidy(ui): remove unused stuff
This commit is contained in:
parent
6a21f5fde1
commit
f10248e3f5
@ -1,38 +0,0 @@
|
||||
import { $logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasCopiedToClipboard } from 'features/canvas/store/actions';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { copyBlobToClipboard } from 'features/system/util/copyBlobToClipboard';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
|
||||
export const addCanvasCopiedToClipboardListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasCopiedToClipboard,
|
||||
effect: async (action, { getState }) => {
|
||||
const moduleLog = $logger.get().child({ namespace: 'canvasCopiedToClipboardListener' });
|
||||
const state = getState();
|
||||
|
||||
try {
|
||||
const blob = getBaseLayerBlob(state);
|
||||
|
||||
copyBlobToClipboard(blob);
|
||||
} catch (err) {
|
||||
moduleLog.error(String(err));
|
||||
toast({
|
||||
id: 'CANVAS_COPY_FAILED',
|
||||
title: t('toast.problemCopyingCanvas'),
|
||||
description: t('toast.problemCopyingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
toast({
|
||||
id: 'CANVAS_COPY_SUCCEEDED',
|
||||
title: t('toast.canvasCopiedClipboard'),
|
||||
status: 'success',
|
||||
});
|
||||
},
|
||||
});
|
||||
};
|
@ -1,34 +0,0 @@
|
||||
import { $logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasDownloadedAsImage } from 'features/canvas/store/actions';
|
||||
import { downloadBlob } from 'features/canvas/util/downloadBlob';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
|
||||
export const addCanvasDownloadedAsImageListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasDownloadedAsImage,
|
||||
effect: async (action, { getState }) => {
|
||||
const moduleLog = $logger.get().child({ namespace: 'canvasSavedToGalleryListener' });
|
||||
const state = getState();
|
||||
|
||||
let blob;
|
||||
try {
|
||||
blob = await getBaseLayerBlob(state);
|
||||
} catch (err) {
|
||||
moduleLog.error(String(err));
|
||||
toast({
|
||||
id: 'CANVAS_DOWNLOAD_FAILED',
|
||||
title: t('toast.problemDownloadingCanvas'),
|
||||
description: t('toast.problemDownloadingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
downloadBlob(blob, 'canvas.png');
|
||||
toast({ id: 'CANVAS_DOWNLOAD_SUCCEEDED', title: t('toast.canvasDownloaded'), status: 'success' });
|
||||
},
|
||||
});
|
||||
};
|
@ -1,54 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasImageToControlAdapter } from 'features/canvas/store/actions';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { caImageChanged } from 'features/controlLayers/store/canvasV2Slice';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
const log = logger('canvas');
|
||||
|
||||
export const addCanvasImageToControlNetListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasImageToControlAdapter,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const state = getState();
|
||||
const { id } = action.payload;
|
||||
|
||||
let blob: Blob;
|
||||
try {
|
||||
blob = await getBaseLayerBlob(state, true);
|
||||
} catch (err) {
|
||||
log.error(String(err));
|
||||
toast({
|
||||
id: 'PROBLEM_SAVING_CANVAS',
|
||||
title: t('toast.problemSavingCanvas'),
|
||||
description: t('toast.problemSavingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const { autoAddBoardId } = state.gallery;
|
||||
|
||||
const imageDTO = await dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([blob], 'savedCanvas.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'control',
|
||||
is_intermediate: true,
|
||||
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
|
||||
crop_visible: false,
|
||||
postUploadAction: {
|
||||
type: 'TOAST',
|
||||
title: t('toast.canvasSentControlnetAssets'),
|
||||
},
|
||||
})
|
||||
).unwrap();
|
||||
|
||||
dispatch(caImageChanged({ id, imageDTO }));
|
||||
},
|
||||
});
|
||||
};
|
@ -1,60 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasMaskSavedToGallery } from 'features/canvas/store/actions';
|
||||
import { getCanvasData } from 'features/canvas/util/getCanvasData';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addCanvasMaskSavedToGalleryListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasMaskSavedToGallery,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const log = logger('canvas');
|
||||
const state = getState();
|
||||
|
||||
const canvasBlobsAndImageData = await getCanvasData(
|
||||
state.canvas.layerState,
|
||||
state.canvas.boundingBoxCoordinates,
|
||||
state.canvas.boundingBoxDimensions,
|
||||
state.canvas.isMaskEnabled,
|
||||
state.canvas.shouldPreserveMaskedArea
|
||||
);
|
||||
|
||||
if (!canvasBlobsAndImageData) {
|
||||
return;
|
||||
}
|
||||
|
||||
const { maskBlob } = canvasBlobsAndImageData;
|
||||
|
||||
if (!maskBlob) {
|
||||
log.error('Problem getting mask layer blob');
|
||||
toast({
|
||||
id: 'PROBLEM_SAVING_MASK',
|
||||
title: t('toast.problemSavingMask'),
|
||||
description: t('toast.problemSavingMaskDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const { autoAddBoardId } = state.gallery;
|
||||
|
||||
dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([maskBlob], 'canvasMaskImage.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'mask',
|
||||
is_intermediate: false,
|
||||
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
|
||||
crop_visible: true,
|
||||
postUploadAction: {
|
||||
type: 'TOAST',
|
||||
title: t('toast.maskSavedAssets'),
|
||||
},
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
@ -1,63 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasMaskToControlAdapter } from 'features/canvas/store/actions';
|
||||
import { getCanvasData } from 'features/canvas/util/getCanvasData';
|
||||
import { caImageChanged } from 'features/controlLayers/store/canvasV2Slice';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addCanvasMaskToControlNetListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasMaskToControlAdapter,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const log = logger('canvas');
|
||||
const state = getState();
|
||||
const { id } = action.payload;
|
||||
const canvasBlobsAndImageData = await getCanvasData(
|
||||
state.canvas.layerState,
|
||||
state.canvas.boundingBoxCoordinates,
|
||||
state.canvas.boundingBoxDimensions,
|
||||
state.canvas.isMaskEnabled,
|
||||
state.canvas.shouldPreserveMaskedArea
|
||||
);
|
||||
|
||||
if (!canvasBlobsAndImageData) {
|
||||
return;
|
||||
}
|
||||
|
||||
const { maskBlob } = canvasBlobsAndImageData;
|
||||
|
||||
if (!maskBlob) {
|
||||
log.error('Problem getting mask layer blob');
|
||||
toast({
|
||||
id: 'PROBLEM_IMPORTING_MASK',
|
||||
title: t('toast.problemImportingMask'),
|
||||
description: t('toast.problemImportingMaskDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const { autoAddBoardId } = state.gallery;
|
||||
|
||||
const imageDTO = await dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([maskBlob], 'canvasMaskImage.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'mask',
|
||||
is_intermediate: true,
|
||||
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
|
||||
crop_visible: false,
|
||||
postUploadAction: {
|
||||
type: 'TOAST',
|
||||
title: t('toast.maskSentControlnetAssets'),
|
||||
},
|
||||
})
|
||||
).unwrap();
|
||||
|
||||
dispatch(caImageChanged({ id, imageDTO }));
|
||||
},
|
||||
});
|
||||
};
|
@ -1,73 +0,0 @@
|
||||
import { $logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { canvasMerged } from 'features/canvas/store/actions';
|
||||
import { $canvasBaseLayer } from 'features/canvas/store/canvasNanostore';
|
||||
import { setMergedCanvas } from 'features/canvas/store/canvasSlice';
|
||||
import { getFullBaseLayerBlob } from 'features/canvas/util/getFullBaseLayerBlob';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addCanvasMergedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasMerged,
|
||||
effect: async (action, { dispatch }) => {
|
||||
const moduleLog = $logger.get().child({ namespace: 'canvasCopiedToClipboardListener' });
|
||||
const blob = await getFullBaseLayerBlob();
|
||||
|
||||
if (!blob) {
|
||||
moduleLog.error('Problem getting base layer blob');
|
||||
toast({
|
||||
id: 'PROBLEM_MERGING_CANVAS',
|
||||
title: t('toast.problemMergingCanvas'),
|
||||
description: t('toast.problemMergingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const canvasBaseLayer = $canvasBaseLayer.get();
|
||||
|
||||
if (!canvasBaseLayer) {
|
||||
moduleLog.error('Problem getting canvas base layer');
|
||||
toast({
|
||||
id: 'PROBLEM_MERGING_CANVAS',
|
||||
title: t('toast.problemMergingCanvas'),
|
||||
description: t('toast.problemMergingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const baseLayerRect = canvasBaseLayer.getClientRect({
|
||||
relativeTo: canvasBaseLayer.getParent() ?? undefined,
|
||||
});
|
||||
|
||||
const imageDTO = await dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([blob], 'mergedCanvas.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'general',
|
||||
is_intermediate: true,
|
||||
postUploadAction: {
|
||||
type: 'TOAST',
|
||||
title: t('toast.canvasMerged'),
|
||||
},
|
||||
})
|
||||
).unwrap();
|
||||
|
||||
// TODO: I can't figure out how to do the type narrowing in the `take()` so just brute forcing it here
|
||||
const { image_name } = imageDTO;
|
||||
|
||||
dispatch(
|
||||
setMergedCanvas({
|
||||
kind: 'image',
|
||||
layer: 'base',
|
||||
imageName: image_name,
|
||||
...baseLayerRect,
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
@ -1,53 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import { canvasSavedToGallery } from 'features/canvas/store/actions';
|
||||
import { getBaseLayerBlob } from 'features/canvas/util/getBaseLayerBlob';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addCanvasSavedToGalleryListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: canvasSavedToGallery,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const log = logger('canvas');
|
||||
const state = getState();
|
||||
|
||||
let blob;
|
||||
try {
|
||||
blob = await getBaseLayerBlob(state);
|
||||
} catch (err) {
|
||||
log.error(String(err));
|
||||
toast({
|
||||
id: 'CANVAS_SAVE_FAILED',
|
||||
title: t('toast.problemSavingCanvas'),
|
||||
description: t('toast.problemSavingCanvasDesc'),
|
||||
status: 'error',
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const { autoAddBoardId } = state.gallery;
|
||||
|
||||
dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([blob], 'savedCanvas.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'general',
|
||||
is_intermediate: false,
|
||||
board_id: autoAddBoardId === 'none' ? undefined : autoAddBoardId,
|
||||
crop_visible: true,
|
||||
postUploadAction: {
|
||||
type: 'TOAST',
|
||||
title: t('toast.canvasSavedGallery'),
|
||||
},
|
||||
metadata: {
|
||||
_canvas_objects: parseify(state.canvas.layerState.objects),
|
||||
},
|
||||
})
|
||||
);
|
||||
},
|
||||
});
|
||||
};
|
@ -1,185 +0,0 @@
|
||||
import { isAnyOf } from '@reduxjs/toolkit';
|
||||
import { logger } from 'app/logging/logger';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import type { AppDispatch } from 'app/store/store';
|
||||
import type { SerializableObject } from 'common/types';
|
||||
import { parseify } from 'common/util/serialize';
|
||||
import {
|
||||
caImageChanged,
|
||||
caModelChanged,
|
||||
caProcessedImageChanged,
|
||||
caProcessorConfigChanged,
|
||||
caProcessorPendingBatchIdChanged,
|
||||
caRecalled,
|
||||
} from 'features/controlLayers/store/canvasV2Slice';
|
||||
import { selectCA } from 'features/controlLayers/store/controlAdaptersReducers';
|
||||
import { IMAGE_FILTERS } from 'features/controlLayers/store/types';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import { getImageDTO } from 'services/api/endpoints/images';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
import type { BatchConfig } from 'services/api/types';
|
||||
import { socketInvocationComplete } from 'services/events/actions';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
const matcher = isAnyOf(caImageChanged, caProcessedImageChanged, caProcessorConfigChanged, caModelChanged, caRecalled);
|
||||
|
||||
const DEBOUNCE_MS = 300;
|
||||
const log = logger('queue');
|
||||
|
||||
/**
|
||||
* Simple helper to cancel a batch and reset the pending batch ID
|
||||
*/
|
||||
const cancelProcessorBatch = async (dispatch: AppDispatch, id: string, batchId: string) => {
|
||||
const req = dispatch(queueApi.endpoints.cancelByBatchIds.initiate({ batch_ids: [batchId] }));
|
||||
log.trace({ batchId }, 'Cancelling existing preprocessor batch');
|
||||
try {
|
||||
await req.unwrap();
|
||||
} catch {
|
||||
// no-op
|
||||
} finally {
|
||||
req.reset();
|
||||
// Always reset the pending batch ID - the cancel req could fail if the batch doesn't exist
|
||||
dispatch(caProcessorPendingBatchIdChanged({ id, batchId: null }));
|
||||
}
|
||||
};
|
||||
|
||||
export const addControlAdapterPreprocessor = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
matcher,
|
||||
effect: async (action, { dispatch, getState, getOriginalState, cancelActiveListeners, delay, take, signal }) => {
|
||||
const id = caRecalled.match(action) ? action.payload.data.id : action.payload.id;
|
||||
const state = getState();
|
||||
const originalState = getOriginalState();
|
||||
|
||||
// Cancel any in-progress instances of this listener
|
||||
cancelActiveListeners();
|
||||
log.trace('Control Layer CA auto-process triggered');
|
||||
|
||||
// Delay before starting actual work
|
||||
await delay(DEBOUNCE_MS);
|
||||
|
||||
const ca = selectCA(state.canvasV2, id);
|
||||
|
||||
if (!ca) {
|
||||
return;
|
||||
}
|
||||
|
||||
// We should only process if the processor settings or image have changed
|
||||
const originalCA = selectCA(originalState.canvasV2, id);
|
||||
const originalImage = originalCA?.imageObject;
|
||||
const originalConfig = originalCA?.processorConfig;
|
||||
|
||||
const image = ca.imageObject;
|
||||
const processedImage = ca.processedImageObject;
|
||||
const config = ca.processorConfig;
|
||||
|
||||
if (isEqual(config, originalConfig) && isEqual(image, originalImage) && processedImage) {
|
||||
// Neither config nor image have changed, we can bail
|
||||
return;
|
||||
}
|
||||
|
||||
if (!image || !config) {
|
||||
// - If we have no image, we have nothing to process
|
||||
// - If we have no processor config, we have nothing to process
|
||||
// Clear the processed image and bail
|
||||
dispatch(caProcessedImageChanged({ id, imageDTO: null }));
|
||||
return;
|
||||
}
|
||||
|
||||
// At this point, the user has stopped fiddling with the processor settings and there is a processor selected.
|
||||
|
||||
// If there is a pending processor batch, cancel it.
|
||||
if (ca.processorPendingBatchId) {
|
||||
cancelProcessorBatch(dispatch, id, ca.processorPendingBatchId);
|
||||
}
|
||||
|
||||
// TODO(psyche): I can't get TS to be happy, it thinkgs `config` is `never` but it should be inferred from the generic... I'll just cast it for now
|
||||
const processorNode = IMAGE_FILTERS[config.type].buildNode(image.image, config as never);
|
||||
const enqueueBatchArg: BatchConfig = {
|
||||
prepend: true,
|
||||
batch: {
|
||||
graph: {
|
||||
nodes: {
|
||||
[processorNode.id]: {
|
||||
...processorNode,
|
||||
// Control images are always intermediate - do not save to gallery
|
||||
is_intermediate: true,
|
||||
},
|
||||
},
|
||||
edges: [],
|
||||
},
|
||||
runs: 1,
|
||||
},
|
||||
};
|
||||
|
||||
// Kick off the processor batch
|
||||
const req = dispatch(
|
||||
queueApi.endpoints.enqueueBatch.initiate(enqueueBatchArg, {
|
||||
fixedCacheKey: 'enqueueBatch',
|
||||
})
|
||||
);
|
||||
|
||||
try {
|
||||
const enqueueResult = await req.unwrap();
|
||||
// TODO(psyche): Update the pydantic models, pretty sure we will _always_ have a batch_id here, but the model says it's optional
|
||||
assert(enqueueResult.batch.batch_id, 'Batch ID not returned from queue');
|
||||
dispatch(caProcessorPendingBatchIdChanged({ id, batchId: enqueueResult.batch.batch_id }));
|
||||
log.debug({ enqueueResult } as SerializableObject, t('queue.graphQueued'));
|
||||
|
||||
// Wait for the processor node to complete
|
||||
const [invocationCompleteAction] = await take(
|
||||
(action): action is ReturnType<typeof socketInvocationComplete> =>
|
||||
socketInvocationComplete.match(action) &&
|
||||
action.payload.data.batch_id === enqueueResult.batch.batch_id &&
|
||||
action.payload.data.invocation_source_id === processorNode.id
|
||||
);
|
||||
|
||||
// We still have to check the output type
|
||||
assert(
|
||||
invocationCompleteAction.payload.data.result.type === 'image_output',
|
||||
`Processor did not return an image output, got: ${invocationCompleteAction.payload.data.result}`
|
||||
);
|
||||
const { image_name } = invocationCompleteAction.payload.data.result.image;
|
||||
|
||||
const imageDTO = await getImageDTO(image_name);
|
||||
assert(imageDTO, "Failed to fetch processor output's image DTO");
|
||||
|
||||
// Whew! We made it. Update the layer with the processed image
|
||||
log.debug({ id, imageDTO }, 'ControlNet image processed');
|
||||
dispatch(caProcessedImageChanged({ id, imageDTO }));
|
||||
dispatch(caProcessorPendingBatchIdChanged({ id, batchId: null }));
|
||||
} catch (error) {
|
||||
if (signal.aborted) {
|
||||
// The listener was canceled - we need to cancel the pending processor batch, if there is one (could have changed by now).
|
||||
const pendingBatchId = selectCA(getState().canvasV2, id)?.processorPendingBatchId;
|
||||
if (pendingBatchId) {
|
||||
cancelProcessorBatch(dispatch, id, pendingBatchId);
|
||||
}
|
||||
log.trace('Control Adapter preprocessor cancelled');
|
||||
} else {
|
||||
// Some other error condition...
|
||||
log.error({ enqueueBatchArg: parseify(enqueueBatchArg) }, t('queue.graphFailedToQueue'));
|
||||
|
||||
if (error instanceof Object) {
|
||||
if ('data' in error && 'status' in error) {
|
||||
if (error.status === 403) {
|
||||
dispatch(caImageChanged({ id, imageDTO: null }));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
toast({
|
||||
id: 'GRAPH_QUEUE_FAILED',
|
||||
title: t('queue.graphFailedToQueue'),
|
||||
status: 'error',
|
||||
});
|
||||
}
|
||||
} finally {
|
||||
req.reset();
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
@ -1,145 +0,0 @@
|
||||
import { logger } from 'app/logging/logger';
|
||||
import { enqueueRequested } from 'app/store/actions';
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import type { SerializableObject } from 'common/types';
|
||||
import openBase64ImageInTab from 'common/util/openBase64ImageInTab';
|
||||
import { canvasBatchIdAdded, stagingAreaInitialized } from 'features/canvas/store/canvasSlice';
|
||||
import { getCanvasData } from 'features/canvas/util/getCanvasData';
|
||||
import { getCanvasGenerationMode } from 'features/canvas/util/getCanvasGenerationMode';
|
||||
import { blobToDataURL } from 'features/controlLayers/konva/util';
|
||||
import { canvasGraphBuilt } from 'features/nodes/store/actions';
|
||||
import { prepareLinearUIBatch } from 'features/nodes/util/graph/buildLinearBatchConfig';
|
||||
import { buildCanvasGraph } from 'features/nodes/util/graph/canvas/buildCanvasGraph';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
import { queueApi } from 'services/api/endpoints/queue';
|
||||
import type { ImageDTO } from 'services/api/types';
|
||||
|
||||
const log = logger('queue');
|
||||
|
||||
/**
|
||||
* This listener is responsible invoking the canvas. This involves a number of steps:
|
||||
*
|
||||
* 1. Generate image blobs from the canvas layers
|
||||
* 2. Determine the generation mode from the layers (txt2img, img2img, inpaint)
|
||||
* 3. Build the canvas graph
|
||||
* 4. Create the session with the graph
|
||||
* 5. Upload the init image if necessary
|
||||
* 6. Upload the mask image if necessary
|
||||
* 7. Update the init and mask images with the session ID
|
||||
* 8. Initialize the staging area if not yet initialized
|
||||
* 9. Dispatch the sessionReadyToInvoke action to invoke the session
|
||||
*/
|
||||
export const addEnqueueRequestedCanvasListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
predicate: (action): action is ReturnType<typeof enqueueRequested> =>
|
||||
enqueueRequested.match(action) && action.payload.tabName === 'canvas',
|
||||
effect: async (action, { getState, dispatch }) => {
|
||||
const { prepend } = action.payload;
|
||||
const state = getState();
|
||||
|
||||
const { layerState, boundingBoxCoordinates, boundingBoxDimensions, isMaskEnabled, shouldPreserveMaskedArea } =
|
||||
state.canvas;
|
||||
|
||||
// Build canvas blobs
|
||||
const canvasBlobsAndImageData = await getCanvasData(
|
||||
layerState,
|
||||
boundingBoxCoordinates,
|
||||
boundingBoxDimensions,
|
||||
isMaskEnabled,
|
||||
shouldPreserveMaskedArea
|
||||
);
|
||||
|
||||
if (!canvasBlobsAndImageData) {
|
||||
log.error('Unable to create canvas data');
|
||||
return;
|
||||
}
|
||||
|
||||
const { baseBlob, baseImageData, maskBlob, maskImageData } = canvasBlobsAndImageData;
|
||||
|
||||
// Determine the generation mode
|
||||
const generationMode = getCanvasGenerationMode(baseImageData, maskImageData);
|
||||
|
||||
if (state.system.enableImageDebugging) {
|
||||
const baseDataURL = await blobToDataURL(baseBlob);
|
||||
const maskDataURL = await blobToDataURL(maskBlob);
|
||||
openBase64ImageInTab([
|
||||
{ base64: maskDataURL, caption: 'mask b64' },
|
||||
{ base64: baseDataURL, caption: 'image b64' },
|
||||
]);
|
||||
}
|
||||
|
||||
log.debug(`Generation mode: ${generationMode}`);
|
||||
|
||||
// Temp placeholders for the init and mask images
|
||||
let canvasInitImage: ImageDTO | undefined;
|
||||
let canvasMaskImage: ImageDTO | undefined;
|
||||
|
||||
// For img2img and inpaint/outpaint, we need to upload the init images
|
||||
if (['img2img', 'inpaint', 'outpaint'].includes(generationMode)) {
|
||||
// upload the image, saving the request id
|
||||
canvasInitImage = await dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([baseBlob], 'canvasInitImage.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'general',
|
||||
is_intermediate: true,
|
||||
})
|
||||
).unwrap();
|
||||
}
|
||||
|
||||
// For inpaint/outpaint, we also need to upload the mask layer
|
||||
if (['inpaint', 'outpaint'].includes(generationMode)) {
|
||||
// upload the image, saving the request id
|
||||
canvasMaskImage = await dispatch(
|
||||
imagesApi.endpoints.uploadImage.initiate({
|
||||
file: new File([maskBlob], 'canvasMaskImage.png', {
|
||||
type: 'image/png',
|
||||
}),
|
||||
image_category: 'mask',
|
||||
is_intermediate: true,
|
||||
})
|
||||
).unwrap();
|
||||
}
|
||||
|
||||
const graph = await buildCanvasGraph(state, generationMode, canvasInitImage, canvasMaskImage);
|
||||
|
||||
log.debug({ graph } as SerializableObject, `Canvas graph built`);
|
||||
|
||||
// currently this action is just listened to for logging
|
||||
dispatch(canvasGraphBuilt(graph));
|
||||
|
||||
const batchConfig = prepareLinearUIBatch(state, graph, prepend);
|
||||
|
||||
try {
|
||||
const req = dispatch(
|
||||
queueApi.endpoints.enqueueBatch.initiate(batchConfig, {
|
||||
fixedCacheKey: 'enqueueBatch',
|
||||
})
|
||||
);
|
||||
|
||||
const enqueueResult = await req.unwrap();
|
||||
req.reset();
|
||||
|
||||
const batchId = enqueueResult.batch.batch_id as string; // we know the is a string, backend provides it
|
||||
|
||||
// Prep the canvas staging area if it is not yet initialized
|
||||
if (!state.canvas.layerState.stagingArea.boundingBox) {
|
||||
dispatch(
|
||||
stagingAreaInitialized({
|
||||
boundingBox: {
|
||||
...state.canvas.boundingBoxCoordinates,
|
||||
...state.canvas.boundingBoxDimensions,
|
||||
},
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
// Associate the session with the canvas session ID
|
||||
dispatch(canvasBatchIdAdded(batchId));
|
||||
} catch {
|
||||
// no-op
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
@ -1,43 +0,0 @@
|
||||
import type { AppStartListening } from 'app/store/middleware/listenerMiddleware';
|
||||
import { stagingAreaImageSaved } from 'features/canvas/store/actions';
|
||||
import { toast } from 'features/toast/toast';
|
||||
import { t } from 'i18next';
|
||||
import { imagesApi } from 'services/api/endpoints/images';
|
||||
|
||||
export const addStagingAreaImageSavedListener = (startAppListening: AppStartListening) => {
|
||||
startAppListening({
|
||||
actionCreator: stagingAreaImageSaved,
|
||||
effect: async (action, { dispatch, getState }) => {
|
||||
const { imageDTO } = action.payload;
|
||||
|
||||
try {
|
||||
const newImageDTO = await dispatch(
|
||||
imagesApi.endpoints.changeImageIsIntermediate.initiate({
|
||||
imageDTO,
|
||||
is_intermediate: false,
|
||||
})
|
||||
).unwrap();
|
||||
|
||||
// we may need to add it to the autoadd board
|
||||
const { autoAddBoardId } = getState().gallery;
|
||||
|
||||
if (autoAddBoardId && autoAddBoardId !== 'none') {
|
||||
await dispatch(
|
||||
imagesApi.endpoints.addImageToBoard.initiate({
|
||||
imageDTO: newImageDTO,
|
||||
board_id: autoAddBoardId,
|
||||
})
|
||||
);
|
||||
}
|
||||
toast({ id: 'IMAGE_SAVED', title: t('toast.imageSaved'), status: 'success' });
|
||||
} catch (error) {
|
||||
toast({
|
||||
id: 'IMAGE_SAVE_FAILED',
|
||||
title: t('toast.imageSavingFailed'),
|
||||
description: (error as Error)?.message,
|
||||
status: 'error',
|
||||
});
|
||||
}
|
||||
},
|
||||
});
|
||||
};
|
@ -1,35 +0,0 @@
|
||||
// https://stackoverflow.com/a/73731908
|
||||
import { useCallback, useEffect, useState } from 'react';
|
||||
|
||||
type UseSingleAndDoubleClickOptions = {
|
||||
onSingleClick: () => void;
|
||||
onDoubleClick: () => void;
|
||||
latency?: number;
|
||||
};
|
||||
|
||||
export function useSingleAndDoubleClick({
|
||||
onSingleClick,
|
||||
onDoubleClick,
|
||||
latency = 250,
|
||||
}: UseSingleAndDoubleClickOptions): () => void {
|
||||
const [click, setClick] = useState(0);
|
||||
|
||||
useEffect(() => {
|
||||
const timer = setTimeout(() => {
|
||||
if (click === 1) {
|
||||
onSingleClick();
|
||||
}
|
||||
setClick(0);
|
||||
}, latency);
|
||||
|
||||
if (click === 2) {
|
||||
onDoubleClick();
|
||||
}
|
||||
|
||||
return () => clearTimeout(timer);
|
||||
}, [click, onDoubleClick, latency, onSingleClick]);
|
||||
|
||||
const onClick = useCallback(() => setClick((prev) => prev + 1), []);
|
||||
|
||||
return onClick;
|
||||
}
|
@ -1,7 +0,0 @@
|
||||
export const isInputElement = (el: HTMLElement) => {
|
||||
return (
|
||||
el.tagName.toLowerCase() === 'input' ||
|
||||
el.tagName.toLowerCase() === 'textarea' ||
|
||||
el.tagName.toLowerCase() === 'select'
|
||||
);
|
||||
};
|
@ -1,23 +0,0 @@
|
||||
type Base64AndCaption = {
|
||||
base64: string;
|
||||
caption: string;
|
||||
};
|
||||
|
||||
const openBase64ImageInTab = (images: Base64AndCaption[]) => {
|
||||
const w = window.open('');
|
||||
if (!w) {
|
||||
return;
|
||||
}
|
||||
|
||||
images.forEach((i) => {
|
||||
const image = new Image();
|
||||
image.src = i.base64;
|
||||
|
||||
w.document.write(i.caption);
|
||||
w.document.write('</br>');
|
||||
w.document.write(image.outerHTML);
|
||||
w.document.write('</br></br>');
|
||||
});
|
||||
};
|
||||
|
||||
export default openBase64ImageInTab;
|
@ -1,30 +0,0 @@
|
||||
import { IconButton } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import { entityDeleted } from 'features/controlLayers/store/canvasV2Slice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiTrashSimpleBold } from 'react-icons/pi';
|
||||
|
||||
export const CanvasEntityDeleteButton = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const entityIdentifier = useEntityIdentifierContext();
|
||||
const onClick = useCallback(() => {
|
||||
dispatch(entityDeleted({ entityIdentifier }));
|
||||
}, [dispatch, entityIdentifier]);
|
||||
return (
|
||||
<IconButton
|
||||
size="sm"
|
||||
colorScheme="error"
|
||||
aria-label={t('common.delete')}
|
||||
tooltip={t('common.delete')}
|
||||
icon={<PiTrashSimpleBold />}
|
||||
onClick={onClick}
|
||||
variant="link"
|
||||
alignSelf="stretch"
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasEntityDeleteButton.displayName = 'CanvasEntityDeleteButton';
|
@ -1,18 +0,0 @@
|
||||
import { IconButton, MenuButton } from '@invoke-ai/ui-library';
|
||||
import { stopPropagation } from 'common/util/stopPropagation';
|
||||
import { memo } from 'react';
|
||||
import { PiDotsThreeVerticalBold } from 'react-icons/pi';
|
||||
|
||||
export const CanvasEntityMenuButton = memo(() => {
|
||||
return (
|
||||
<MenuButton
|
||||
as={IconButton}
|
||||
aria-label="Layer menu"
|
||||
size="sm"
|
||||
icon={<PiDotsThreeVerticalBold />}
|
||||
onDoubleClick={stopPropagation} // double click expands the layer
|
||||
/>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasEntityMenuButton.displayName = 'CanvasEntityMenuButton';
|
@ -1,25 +0,0 @@
|
||||
import { MenuItem } from '@invoke-ai/ui-library';
|
||||
import { useAppDispatch } from 'app/store/storeHooks';
|
||||
import { useEntityIdentifierContext } from 'features/controlLayers/contexts/EntityIdentifierContext';
|
||||
import { entityReset } from 'features/controlLayers/store/canvasV2Slice';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { PiArrowCounterClockwiseBold } from 'react-icons/pi';
|
||||
|
||||
export const CanvasEntityMenuItemsReset = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const entityIdentifier = useEntityIdentifierContext();
|
||||
|
||||
const resetEntity = useCallback(() => {
|
||||
dispatch(entityReset({ entityIdentifier }));
|
||||
}, [dispatch, entityIdentifier]);
|
||||
|
||||
return (
|
||||
<MenuItem onClick={resetEntity} icon={<PiArrowCounterClockwiseBold />}>
|
||||
{t('accessibility.reset')}
|
||||
</MenuItem>
|
||||
);
|
||||
});
|
||||
|
||||
CanvasEntityMenuItemsReset.displayName = 'CanvasEntityMenuItemsReset';
|
@ -1,161 +0,0 @@
|
||||
import { CanvasEntity } from 'features/controlLayers/konva/CanvasEntity';
|
||||
import { CanvasImageRenderer } from 'features/controlLayers/konva/CanvasImage';
|
||||
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
|
||||
import { CanvasTransformer } from 'features/controlLayers/konva/CanvasTransformer';
|
||||
import { type CanvasControlAdapterState, isDrawingTool } from 'features/controlLayers/store/types';
|
||||
import Konva from 'konva';
|
||||
|
||||
export class CanvasControlAdapter extends CanvasEntity {
|
||||
static NAME_PREFIX = 'control-adapter';
|
||||
static LAYER_NAME = `${CanvasControlAdapter.NAME_PREFIX}_layer`;
|
||||
static TRANSFORMER_NAME = `${CanvasControlAdapter.NAME_PREFIX}_transformer`;
|
||||
static GROUP_NAME = `${CanvasControlAdapter.NAME_PREFIX}_group`;
|
||||
static OBJECT_GROUP_NAME = `${CanvasControlAdapter.NAME_PREFIX}_object-group`;
|
||||
static TYPE = 'control_adapter' as const;
|
||||
|
||||
type = CanvasControlAdapter.TYPE;
|
||||
_state: CanvasControlAdapterState;
|
||||
|
||||
konva: {
|
||||
layer: Konva.Layer;
|
||||
group: Konva.Group;
|
||||
objectGroup: Konva.Group;
|
||||
};
|
||||
|
||||
image: CanvasImageRenderer | null;
|
||||
transformer: CanvasTransformer;
|
||||
|
||||
constructor(state: CanvasControlAdapterState, manager: CanvasManager) {
|
||||
super(state.id, manager);
|
||||
this.konva = {
|
||||
layer: new Konva.Layer({
|
||||
name: CanvasControlAdapter.LAYER_NAME,
|
||||
imageSmoothingEnabled: false,
|
||||
listening: false,
|
||||
}),
|
||||
group: new Konva.Group({
|
||||
name: CanvasControlAdapter.GROUP_NAME,
|
||||
listening: false,
|
||||
}),
|
||||
objectGroup: new Konva.Group({ name: CanvasControlAdapter.GROUP_NAME, listening: false }),
|
||||
};
|
||||
this.transformer = new CanvasTransformer(this);
|
||||
this.konva.group.add(this.konva.objectGroup);
|
||||
this.konva.layer.add(this.konva.group);
|
||||
this.konva.layer.add(this.konva.transformer);
|
||||
|
||||
this.image = null;
|
||||
this._state = state;
|
||||
}
|
||||
|
||||
async render(state: CanvasControlAdapterState) {
|
||||
this._state = state;
|
||||
|
||||
// Update the layer's position and listening state
|
||||
this.konva.group.setAttrs({
|
||||
x: state.position.x,
|
||||
y: state.position.y,
|
||||
scaleX: 1,
|
||||
scaleY: 1,
|
||||
});
|
||||
|
||||
const imageObject = state.processedImageObject ?? state.imageObject;
|
||||
|
||||
let didDraw = false;
|
||||
|
||||
if (!imageObject) {
|
||||
if (this.image) {
|
||||
this.image.konva.group.visible(false);
|
||||
didDraw = true;
|
||||
}
|
||||
} else if (!this.image) {
|
||||
this.image = new CanvasImageRenderer(imageObject, this);
|
||||
this.updateGroup(true);
|
||||
this.konva.objectGroup.add(this.image.konva.group);
|
||||
await this.image.updateImageSource(imageObject.image.image_name);
|
||||
} else if (!this.image.isLoading && !this.image.isError) {
|
||||
if (await this.image.update(imageObject)) {
|
||||
didDraw = true;
|
||||
}
|
||||
}
|
||||
|
||||
this.updateGroup(didDraw);
|
||||
}
|
||||
|
||||
updateGroup(didDraw: boolean) {
|
||||
this.konva.layer.visible(this._state.isEnabled);
|
||||
|
||||
this.konva.group.opacity(this._state.opacity);
|
||||
const isSelected = this.manager.stateApi.getIsSelected(this.id);
|
||||
const selectedTool = this.manager.stateApi.getToolState().selected;
|
||||
|
||||
if (!this.image?.konva.image) {
|
||||
// If the layer is totally empty, reset the cache and bail out.
|
||||
this.konva.layer.listening(false);
|
||||
this.konva.transformer.nodes([]);
|
||||
if (this.konva.group.isCached()) {
|
||||
this.konva.group.clearCache();
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (isSelected && selectedTool === 'move') {
|
||||
// When the layer is selected and being moved, we should always cache it.
|
||||
// We should update the cache if we drew to the layer.
|
||||
if (!this.konva.group.isCached() || didDraw) {
|
||||
this.konva.group.cache();
|
||||
}
|
||||
// Activate the transformer
|
||||
this.konva.layer.listening(true);
|
||||
this.konva.transformer.nodes([this.konva.group]);
|
||||
this.konva.transformer.forceUpdate();
|
||||
return;
|
||||
}
|
||||
|
||||
if (isSelected && selectedTool !== 'move') {
|
||||
// If the layer is selected but not using the move tool, we don't want the layer to be listening.
|
||||
this.konva.layer.listening(false);
|
||||
// The transformer also does not need to be active.
|
||||
this.konva.transformer.nodes([]);
|
||||
if (isDrawingTool(selectedTool)) {
|
||||
// We are using a drawing tool (brush, eraser, rect). These tools change the layer's rendered appearance, so we
|
||||
// should never be cached.
|
||||
if (this.konva.group.isCached()) {
|
||||
this.konva.group.clearCache();
|
||||
}
|
||||
} else {
|
||||
// We are using a non-drawing tool (move, view, bbox), so we should cache the layer.
|
||||
// We should update the cache if we drew to the layer.
|
||||
if (!this.konva.group.isCached() || didDraw) {
|
||||
this.konva.group.cache();
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (!isSelected) {
|
||||
// Unselected layers should not be listening
|
||||
this.konva.layer.listening(false);
|
||||
// The transformer also does not need to be active.
|
||||
this.konva.transformer.nodes([]);
|
||||
// Update the layer's cache if it's not already cached or we drew to it.
|
||||
if (!this.konva.group.isCached() || didDraw) {
|
||||
this.konva.group.cache();
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
destroy(): void {
|
||||
this.konva.layer.destroy();
|
||||
}
|
||||
|
||||
repr() {
|
||||
return {
|
||||
id: this.id,
|
||||
type: this.type,
|
||||
state: this._state,
|
||||
};
|
||||
}
|
||||
}
|
@ -1,166 +0,0 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import { deepClone } from 'common/util/deepClone';
|
||||
import { roundToMultiple } from 'common/util/roundDownToMultiple';
|
||||
import { selectOptimalDimension } from 'features/controlLayers/store/selectors';
|
||||
import {
|
||||
DENOISE_LATENTS_HRF,
|
||||
ESRGAN_HRF,
|
||||
IMAGE_TO_LATENTS_HRF,
|
||||
LATENTS_TO_IMAGE_HRF_HR,
|
||||
LATENTS_TO_IMAGE_HRF_LR,
|
||||
NOISE_HRF,
|
||||
RESIZE_HRF,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import type { Graph } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { getBoardField } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { Invocation } from 'services/api/types';
|
||||
|
||||
/**
|
||||
* Calculates the new resolution for high-resolution features (HRF) based on base model type.
|
||||
* Adjusts the width and height to maintain the aspect ratio and constrains them by the model's dimension limits,
|
||||
* rounding down to the nearest multiple of 8.
|
||||
*
|
||||
* @param {number} optimalDimension The optimal dimension for the base model.
|
||||
* @param {number} width The current width to be adjusted for HRF.
|
||||
* @param {number} height The current height to be adjusted for HRF.
|
||||
* @return {{newWidth: number, newHeight: number}} The new width and height, adjusted and rounded as needed.
|
||||
*/
|
||||
function calculateHrfRes(
|
||||
optimalDimension: number,
|
||||
width: number,
|
||||
height: number
|
||||
): { newWidth: number; newHeight: number } {
|
||||
const aspect = width / height;
|
||||
|
||||
const minDimension = Math.floor(optimalDimension * 0.5);
|
||||
const modelArea = optimalDimension * optimalDimension; // Assuming square images for model_area
|
||||
|
||||
let initWidth;
|
||||
let initHeight;
|
||||
|
||||
if (aspect > 1.0) {
|
||||
initHeight = Math.max(minDimension, Math.sqrt(modelArea / aspect));
|
||||
initWidth = initHeight * aspect;
|
||||
} else {
|
||||
initWidth = Math.max(minDimension, Math.sqrt(modelArea * aspect));
|
||||
initHeight = initWidth / aspect;
|
||||
}
|
||||
// Cap initial height and width to final height and width.
|
||||
initWidth = Math.min(width, initWidth);
|
||||
initHeight = Math.min(height, initHeight);
|
||||
|
||||
const newWidth = roundToMultiple(Math.floor(initWidth), 8);
|
||||
const newHeight = roundToMultiple(Math.floor(initHeight), 8);
|
||||
|
||||
return { newWidth, newHeight };
|
||||
}
|
||||
|
||||
/**
|
||||
* Adds HRF to the graph.
|
||||
* @param state The root redux state
|
||||
* @param g The graph to add HRF to
|
||||
* @param denoise The denoise node
|
||||
* @param noise The noise node
|
||||
* @param l2i The l2i node
|
||||
* @param vaeSource The VAE source node (may be a model loader, VAE loader, or seamless node)
|
||||
* @returns The HRF image output node.
|
||||
*/
|
||||
export const addHRF = (
|
||||
state: RootState,
|
||||
g: Graph,
|
||||
denoise: Invocation<'denoise_latents'>,
|
||||
noise: Invocation<'noise'>,
|
||||
l2i: Invocation<'l2i'>,
|
||||
vaeSource: Invocation<'vae_loader'> | Invocation<'main_model_loader'> | Invocation<'seamless'>
|
||||
): Invocation<'l2i'> => {
|
||||
const { hrfStrength, hrfEnabled, hrfMethod } = state.hrf;
|
||||
const { width, height } = state.canvasV2.document;
|
||||
const optimalDimension = selectOptimalDimension(state);
|
||||
const { newWidth: hrfWidth, newHeight: hrfHeight } = calculateHrfRes(optimalDimension, width, height);
|
||||
|
||||
// Change height and width of original noise node to initial resolution.
|
||||
if (noise) {
|
||||
noise.width = hrfWidth;
|
||||
noise.height = hrfHeight;
|
||||
}
|
||||
|
||||
// Define new nodes and their connections, roughly in order of operations.
|
||||
const l2iHrfLR = g.addNode({ type: 'l2i', id: LATENTS_TO_IMAGE_HRF_LR, fp32: l2i.fp32 });
|
||||
g.addEdge(denoise, 'latents', l2iHrfLR, 'latents');
|
||||
g.addEdge(vaeSource, 'vae', l2iHrfLR, 'vae');
|
||||
|
||||
const resizeHrf = g.addNode({
|
||||
id: RESIZE_HRF,
|
||||
type: 'img_resize',
|
||||
width: width,
|
||||
height: height,
|
||||
});
|
||||
|
||||
if (hrfMethod === 'ESRGAN') {
|
||||
let model_name: Invocation<'esrgan'>['model_name'] = 'RealESRGAN_x2plus.pth';
|
||||
if ((width * height) / (hrfWidth * hrfHeight) > 2) {
|
||||
model_name = 'RealESRGAN_x4plus.pth';
|
||||
}
|
||||
const esrganHrf = g.addNode({ id: ESRGAN_HRF, type: 'esrgan', model_name });
|
||||
g.addEdge(l2iHrfLR, 'image', esrganHrf, 'image');
|
||||
g.addEdge(esrganHrf, 'image', resizeHrf, 'image');
|
||||
} else {
|
||||
g.addEdge(l2iHrfLR, 'image', resizeHrf, 'image');
|
||||
}
|
||||
|
||||
const noiseHrf = g.addNode({
|
||||
type: 'noise',
|
||||
id: NOISE_HRF,
|
||||
seed: noise.seed,
|
||||
use_cpu: noise.use_cpu,
|
||||
});
|
||||
g.addEdge(resizeHrf, 'height', noiseHrf, 'height');
|
||||
g.addEdge(resizeHrf, 'width', noiseHrf, 'width');
|
||||
|
||||
const i2lHrf = g.addNode({ type: 'i2l', id: IMAGE_TO_LATENTS_HRF });
|
||||
g.addEdge(vaeSource, 'vae', i2lHrf, 'vae');
|
||||
g.addEdge(resizeHrf, 'image', i2lHrf, 'image');
|
||||
|
||||
const denoiseHrf = g.addNode({
|
||||
type: 'denoise_latents',
|
||||
id: DENOISE_LATENTS_HRF,
|
||||
cfg_scale: denoise.cfg_scale,
|
||||
scheduler: denoise.scheduler,
|
||||
steps: denoise.steps,
|
||||
denoising_start: 1 - hrfStrength,
|
||||
denoising_end: 1,
|
||||
});
|
||||
g.addEdge(i2lHrf, 'latents', denoiseHrf, 'latents');
|
||||
g.addEdge(noiseHrf, 'noise', denoiseHrf, 'noise');
|
||||
|
||||
// Copy edges to the original denoise into the new denoise
|
||||
g.getEdgesTo(denoise, ['control', 'ip_adapter', 'unet', 'positive_conditioning', 'negative_conditioning']).forEach(
|
||||
(edge) => {
|
||||
const clone = deepClone(edge);
|
||||
clone.destination.node_id = denoiseHrf.id;
|
||||
g.addEdgeFromObj(clone);
|
||||
}
|
||||
);
|
||||
|
||||
// The original l2i node is unnecessary now, remove it
|
||||
g.deleteNode(l2i.id);
|
||||
|
||||
const l2iHrfHR = g.addNode({
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE_HRF_HR,
|
||||
fp32: l2i.fp32,
|
||||
is_intermediate: false,
|
||||
board: getBoardField(state),
|
||||
});
|
||||
g.addEdge(vaeSource, 'vae', l2iHrfHR, 'vae');
|
||||
g.addEdge(denoiseHrf, 'latents', l2iHrfHR, 'latents');
|
||||
|
||||
g.upsertMetadata({
|
||||
hrf_strength: hrfStrength,
|
||||
hrf_enabled: hrfEnabled,
|
||||
hrf_method: hrfMethod,
|
||||
});
|
||||
g.setMetadataReceivingNode(l2iHrfHR);
|
||||
|
||||
return l2iHrfHR;
|
||||
};
|
@ -1,5 +0,0 @@
|
||||
import type { CanvasRasterLayerState } from 'features/controlLayers/store/types';
|
||||
|
||||
export const isValidLayer = (layer: CanvasRasterLayerState) => {
|
||||
return layer.isEnabled && layer.objects.length > 0;
|
||||
};
|
@ -1,197 +0,0 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
|
||||
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
|
||||
import {
|
||||
LATENTS_TO_IMAGE,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NEGATIVE_CONDITIONING_COLLECT,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING_COLLECT,
|
||||
SDXL_CONTROL_LAYERS_GRAPH,
|
||||
SDXL_DENOISE_LATENTS,
|
||||
SDXL_MODEL_LOADER,
|
||||
VAE_LOADER,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import { addControlAdapters } from 'features/nodes/util/graph/generation/addControlAdapters';
|
||||
import { addIPAdapters } from 'features/nodes/util/graph/generation/addIPAdapters';
|
||||
import { addNSFWChecker } from 'features/nodes/util/graph/generation/addNSFWChecker';
|
||||
import { addSDXLLoRAs } from 'features/nodes/util/graph/generation/addSDXLLoRAs';
|
||||
import { addSDXLRefiner } from 'features/nodes/util/graph/generation/addSDXLRefiner';
|
||||
import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
|
||||
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
|
||||
import { Graph } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { getBoardField, getPresetModifiedPrompts , getSizes } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import type { Invocation, NonNullableGraph } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import { addRegions } from './addRegions';
|
||||
|
||||
export const buildImageToImageSDXLGraph = async (
|
||||
state: RootState,
|
||||
manager: CanvasManager
|
||||
): Promise<NonNullableGraph> => {
|
||||
const { bbox, params } = state.canvasV2;
|
||||
const {
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
cfgRescaleMultiplier: cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
seed,
|
||||
steps,
|
||||
shouldUseCpuNoise,
|
||||
vaePrecision,
|
||||
vae,
|
||||
refinerModel,
|
||||
refinerStart,
|
||||
img2imgStrength,
|
||||
} = params;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
const { positivePrompt, negativePrompt, positiveStylePrompt, negativeStylePrompt } = getPresetModifiedPrompts(state);
|
||||
const { originalSize, scaledSize } = getSizes(bbox);
|
||||
|
||||
|
||||
|
||||
const g = new Graph(SDXL_CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
type: 'sdxl_model_loader',
|
||||
id: SDXL_MODEL_LOADER,
|
||||
model,
|
||||
});
|
||||
const posCond = g.addNode({
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
style: positiveStylePrompt,
|
||||
});
|
||||
const posCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: POSITIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const negCond = g.addNode({
|
||||
type: 'sdxl_compel_prompt',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
style: negativeStylePrompt,
|
||||
});
|
||||
const negCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const noise = g.addNode({
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
seed,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
use_cpu: shouldUseCpuNoise,
|
||||
});
|
||||
const denoise = g.addNode({
|
||||
type: 'denoise_latents',
|
||||
id: SDXL_DENOISE_LATENTS,
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_start: refinerModel ? Math.min(refinerStart, 1 - img2imgStrength) : 1 - img2imgStrength,
|
||||
denoising_end: refinerModel ? refinerStart : 1,
|
||||
});
|
||||
const l2i = g.addNode({
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32: vaePrecision === 'fp32',
|
||||
board: getBoardField(state),
|
||||
// This is the terminal node and must always save to gallery.
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
const vaeLoader =
|
||||
vae?.base === model.base
|
||||
? g.addNode({
|
||||
type: 'vae_loader',
|
||||
id: VAE_LOADER,
|
||||
vae_model: vae,
|
||||
})
|
||||
: null;
|
||||
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> | Invocation<'img_resize'> =
|
||||
l2i;
|
||||
|
||||
g.addEdge(modelLoader, 'unet', denoise, 'unet');
|
||||
g.addEdge(modelLoader, 'clip', posCond, 'clip');
|
||||
g.addEdge(modelLoader, 'clip', negCond, 'clip');
|
||||
g.addEdge(modelLoader, 'clip2', posCond, 'clip2');
|
||||
g.addEdge(modelLoader, 'clip2', negCond, 'clip2');
|
||||
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
|
||||
g.addEdge(negCond, 'conditioning', negCondCollect, 'item');
|
||||
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
|
||||
g.addEdge(negCondCollect, 'collection', denoise, 'negative_conditioning');
|
||||
g.addEdge(noise, 'noise', denoise, 'noise');
|
||||
g.addEdge(denoise, 'latents', l2i, 'latents');
|
||||
|
||||
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
|
||||
assert(modelConfig.base === 'sdxl');
|
||||
|
||||
g.upsertMetadata({
|
||||
generation_mode: 'sdxl_txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: Graph.getModelMetadataField(modelConfig),
|
||||
seed,
|
||||
steps,
|
||||
rand_device: shouldUseCpuNoise ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
positive_style_prompt: positiveStylePrompt,
|
||||
negative_style_prompt: negativeStylePrompt,
|
||||
vae: vae ?? undefined,
|
||||
});
|
||||
|
||||
const seamless = addSeamless(state, g, denoise, modelLoader, vaeLoader);
|
||||
|
||||
addSDXLLoRAs(state, g, denoise, modelLoader, seamless, posCond, negCond);
|
||||
|
||||
// We might get the VAE from the main model, custom VAE, or seamless node.
|
||||
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
|
||||
g.addEdge(vaeSource, 'vae', l2i, 'vae');
|
||||
|
||||
// Add Refiner if enabled
|
||||
if (refinerModel) {
|
||||
await addSDXLRefiner(state, g, denoise, seamless, posCond, negCond, l2i);
|
||||
}
|
||||
|
||||
|
||||
|
||||
const _addedCAs = addControlAdapters(state.canvasV2.controlAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedIPAs = addIPAdapters(state.canvasV2.ipAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedRegions = await addRegions(
|
||||
manager,
|
||||
state.canvasV2.regions.entities,
|
||||
g,
|
||||
state.canvasV2.document,
|
||||
state.canvasV2.bbox,
|
||||
modelConfig.base,
|
||||
denoise,
|
||||
posCond,
|
||||
negCond,
|
||||
posCondCollect,
|
||||
negCondCollect
|
||||
);
|
||||
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
imageOutput = addNSFWChecker(g, imageOutput);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
imageOutput = addWatermarker(g, imageOutput);
|
||||
}
|
||||
|
||||
g.setMetadataReceivingNode(imageOutput);
|
||||
return g.getGraph();
|
||||
};
|
@ -1,205 +0,0 @@
|
||||
import type { RootState } from 'app/store/store';
|
||||
import type { CanvasManager } from 'features/controlLayers/konva/CanvasManager';
|
||||
import { fetchModelConfigWithTypeGuard } from 'features/metadata/util/modelFetchingHelpers';
|
||||
import {
|
||||
CLIP_SKIP,
|
||||
CONTROL_LAYERS_GRAPH,
|
||||
DENOISE_LATENTS,
|
||||
LATENTS_TO_IMAGE,
|
||||
MAIN_MODEL_LOADER,
|
||||
NEGATIVE_CONDITIONING,
|
||||
NEGATIVE_CONDITIONING_COLLECT,
|
||||
NOISE,
|
||||
POSITIVE_CONDITIONING,
|
||||
POSITIVE_CONDITIONING_COLLECT,
|
||||
VAE_LOADER,
|
||||
} from 'features/nodes/util/graph/constants';
|
||||
import { addControlAdapters } from 'features/nodes/util/graph/generation/addControlAdapters';
|
||||
// import { addHRF } from 'features/nodes/util/graph/generation/addHRF';
|
||||
import { addIPAdapters } from 'features/nodes/util/graph/generation/addIPAdapters';
|
||||
import { addLoRAs } from 'features/nodes/util/graph/generation/addLoRAs';
|
||||
import { addNSFWChecker } from 'features/nodes/util/graph/generation/addNSFWChecker';
|
||||
import { addSeamless } from 'features/nodes/util/graph/generation/addSeamless';
|
||||
import { addWatermarker } from 'features/nodes/util/graph/generation/addWatermarker';
|
||||
import type { GraphType } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { Graph } from 'features/nodes/util/graph/generation/Graph';
|
||||
import { getBoardField, getPresetModifiedPrompts , getSizes } from 'features/nodes/util/graph/graphBuilderUtils';
|
||||
import { isEqual } from 'lodash-es';
|
||||
import type { Invocation } from 'services/api/types';
|
||||
import { isNonRefinerMainModelConfig } from 'services/api/types';
|
||||
import { assert } from 'tsafe';
|
||||
|
||||
import { addRegions } from './addRegions';
|
||||
|
||||
export const buildTextToImageSD1SD2Graph = async (state: RootState, manager: CanvasManager): Promise<GraphType> => {
|
||||
const { bbox, params } = state.canvasV2;
|
||||
|
||||
const {
|
||||
model,
|
||||
cfgScale: cfg_scale,
|
||||
cfgRescaleMultiplier: cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
clipSkip: skipped_layers,
|
||||
shouldUseCpuNoise,
|
||||
vaePrecision,
|
||||
seed,
|
||||
vae,
|
||||
} = params;
|
||||
|
||||
assert(model, 'No model found in state');
|
||||
|
||||
const { positivePrompt, negativePrompt } = getPresetModifiedPrompts(state);
|
||||
const { originalSize, scaledSize } = getSizes(bbox);
|
||||
|
||||
const g = new Graph(CONTROL_LAYERS_GRAPH);
|
||||
const modelLoader = g.addNode({
|
||||
type: 'main_model_loader',
|
||||
id: MAIN_MODEL_LOADER,
|
||||
model,
|
||||
});
|
||||
const clipSkip = g.addNode({
|
||||
type: 'clip_skip',
|
||||
id: CLIP_SKIP,
|
||||
skipped_layers,
|
||||
});
|
||||
const posCond = g.addNode({
|
||||
type: 'compel',
|
||||
id: POSITIVE_CONDITIONING,
|
||||
prompt: positivePrompt,
|
||||
});
|
||||
const posCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: POSITIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const negCond = g.addNode({
|
||||
type: 'compel',
|
||||
id: NEGATIVE_CONDITIONING,
|
||||
prompt: negativePrompt,
|
||||
});
|
||||
const negCondCollect = g.addNode({
|
||||
type: 'collect',
|
||||
id: NEGATIVE_CONDITIONING_COLLECT,
|
||||
});
|
||||
const noise = g.addNode({
|
||||
type: 'noise',
|
||||
id: NOISE,
|
||||
seed,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
use_cpu: shouldUseCpuNoise,
|
||||
});
|
||||
const denoise = g.addNode({
|
||||
type: 'denoise_latents',
|
||||
id: DENOISE_LATENTS,
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
scheduler,
|
||||
steps,
|
||||
denoising_start: 0,
|
||||
denoising_end: 1,
|
||||
});
|
||||
const l2i = g.addNode({
|
||||
type: 'l2i',
|
||||
id: LATENTS_TO_IMAGE,
|
||||
fp32: vaePrecision === 'fp32',
|
||||
board: getBoardField(state),
|
||||
// This is the terminal node and must always save to gallery.
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
const vaeLoader =
|
||||
vae?.base === model.base
|
||||
? g.addNode({
|
||||
type: 'vae_loader',
|
||||
id: VAE_LOADER,
|
||||
vae_model: vae,
|
||||
})
|
||||
: null;
|
||||
|
||||
let imageOutput: Invocation<'l2i'> | Invocation<'img_nsfw'> | Invocation<'img_watermark'> | Invocation<'img_resize'> =
|
||||
l2i;
|
||||
|
||||
g.addEdge(modelLoader, 'unet', denoise, 'unet');
|
||||
g.addEdge(modelLoader, 'clip', clipSkip, 'clip');
|
||||
g.addEdge(clipSkip, 'clip', posCond, 'clip');
|
||||
g.addEdge(clipSkip, 'clip', negCond, 'clip');
|
||||
g.addEdge(posCond, 'conditioning', posCondCollect, 'item');
|
||||
g.addEdge(negCond, 'conditioning', negCondCollect, 'item');
|
||||
g.addEdge(posCondCollect, 'collection', denoise, 'positive_conditioning');
|
||||
g.addEdge(negCondCollect, 'collection', denoise, 'negative_conditioning');
|
||||
g.addEdge(noise, 'noise', denoise, 'noise');
|
||||
g.addEdge(denoise, 'latents', l2i, 'latents');
|
||||
|
||||
const modelConfig = await fetchModelConfigWithTypeGuard(model.key, isNonRefinerMainModelConfig);
|
||||
assert(modelConfig.base === 'sd-1' || modelConfig.base === 'sd-2');
|
||||
|
||||
g.upsertMetadata({
|
||||
generation_mode: 'txt2img',
|
||||
cfg_scale,
|
||||
cfg_rescale_multiplier,
|
||||
width: scaledSize.width,
|
||||
height: scaledSize.height,
|
||||
positive_prompt: positivePrompt,
|
||||
negative_prompt: negativePrompt,
|
||||
model: Graph.getModelMetadataField(modelConfig),
|
||||
seed,
|
||||
steps,
|
||||
rand_device: shouldUseCpuNoise ? 'cpu' : 'cuda',
|
||||
scheduler,
|
||||
clip_skip: skipped_layers,
|
||||
vae: vae ?? undefined,
|
||||
});
|
||||
|
||||
const seamless = addSeamless(state, g, denoise, modelLoader, vaeLoader);
|
||||
|
||||
addLoRAs(state, g, denoise, modelLoader, seamless, clipSkip, posCond, negCond);
|
||||
|
||||
// We might get the VAE from the main model, custom VAE, or seamless node.
|
||||
const vaeSource = seamless ?? vaeLoader ?? modelLoader;
|
||||
g.addEdge(vaeSource, 'vae', l2i, 'vae');
|
||||
|
||||
if (!isEqual(scaledSize, originalSize)) {
|
||||
// We are using scaled bbox and need to resize the output image back to the original size.
|
||||
imageOutput = g.addNode({
|
||||
id: 'img_resize',
|
||||
type: 'img_resize',
|
||||
...originalSize,
|
||||
is_intermediate: false,
|
||||
use_cache: false,
|
||||
});
|
||||
g.addEdge(l2i, 'image', imageOutput, 'image');
|
||||
}
|
||||
|
||||
const _addedCAs = addControlAdapters(state.canvasV2.controlAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedIPAs = addIPAdapters(state.canvasV2.ipAdapters.entities, g, denoise, modelConfig.base);
|
||||
const _addedRegions = await addRegions(
|
||||
manager,
|
||||
state.canvasV2.regions.entities,
|
||||
g,
|
||||
state.canvasV2.document,
|
||||
state.canvasV2.bbox,
|
||||
modelConfig.base,
|
||||
denoise,
|
||||
posCond,
|
||||
negCond,
|
||||
posCondCollect,
|
||||
negCondCollect
|
||||
);
|
||||
|
||||
// const isHRFAllowed = !addedLayers.some((l) => isInitialImageLayer(l) || isRegionalGuidanceLayer(l));
|
||||
// if (isHRFAllowed && state.hrf.hrfEnabled) {
|
||||
// imageOutput = addHRF(state, g, denoise, noise, l2i, vaeSource);
|
||||
// }
|
||||
|
||||
if (state.system.shouldUseNSFWChecker) {
|
||||
imageOutput = addNSFWChecker(g, imageOutput);
|
||||
}
|
||||
|
||||
if (state.system.shouldUseWatermarker) {
|
||||
imageOutput = addWatermarker(g, imageOutput);
|
||||
}
|
||||
|
||||
g.setMetadataReceivingNode(imageOutput);
|
||||
return g.getGraph();
|
||||
};
|
@ -1,53 +0,0 @@
|
||||
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { isStagingSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import { selectOptimalDimension } from 'features/controlLayers/store/selectors';
|
||||
import { useImageSizeContext } from 'features/parameters/components/ImageSize/ImageSizeContext';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const ParamBoundingBoxHeight = () => {
|
||||
const { t } = useTranslation();
|
||||
const ctx = useImageSizeContext();
|
||||
const isStaging = useAppSelector(isStagingSelector);
|
||||
const optimalDimension = useAppSelector(selectOptimalDimension);
|
||||
const sliderMin = useAppSelector((s) => s.config.sd.boundingBoxHeight.sliderMin);
|
||||
const sliderMax = useAppSelector((s) => s.config.sd.boundingBoxHeight.sliderMax);
|
||||
const numberInputMin = useAppSelector((s) => s.config.sd.boundingBoxHeight.numberInputMin);
|
||||
const numberInputMax = useAppSelector((s) => s.config.sd.boundingBoxHeight.numberInputMax);
|
||||
const coarseStep = useAppSelector((s) => s.config.sd.boundingBoxHeight.coarseStep);
|
||||
const fineStep = useAppSelector((s) => s.config.sd.boundingBoxHeight.fineStep);
|
||||
const onChange = useCallback(
|
||||
(v: number) => {
|
||||
ctx.heightChanged(v);
|
||||
},
|
||||
[ctx]
|
||||
);
|
||||
|
||||
return (
|
||||
<FormControl isDisabled={isStaging}>
|
||||
<FormLabel>{t('parameters.height')}</FormLabel>
|
||||
<CompositeSlider
|
||||
min={sliderMin}
|
||||
max={sliderMax}
|
||||
step={coarseStep}
|
||||
fineStep={fineStep}
|
||||
value={ctx.height}
|
||||
defaultValue={optimalDimension}
|
||||
onChange={onChange}
|
||||
marks
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
min={numberInputMin}
|
||||
max={numberInputMax}
|
||||
step={coarseStep}
|
||||
fineStep={fineStep}
|
||||
value={ctx.height}
|
||||
defaultValue={optimalDimension}
|
||||
onChange={onChange}
|
||||
/>
|
||||
</FormControl>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamBoundingBoxHeight);
|
@ -1,53 +0,0 @@
|
||||
import { CompositeNumberInput, CompositeSlider, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { isStagingSelector } from 'features/canvas/store/canvasSelectors';
|
||||
import { selectOptimalDimension } from 'features/controlLayers/store/selectors';
|
||||
import { useImageSizeContext } from 'features/parameters/components/ImageSize/ImageSizeContext';
|
||||
import { memo, useCallback } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const ParamBoundingBoxWidth = () => {
|
||||
const { t } = useTranslation();
|
||||
const ctx = useImageSizeContext();
|
||||
const isStaging = useAppSelector(isStagingSelector);
|
||||
const optimalDimension = useAppSelector(selectOptimalDimension);
|
||||
const sliderMin = useAppSelector((s) => s.config.sd.boundingBoxWidth.sliderMin);
|
||||
const sliderMax = useAppSelector((s) => s.config.sd.boundingBoxWidth.sliderMax);
|
||||
const numberInputMin = useAppSelector((s) => s.config.sd.boundingBoxWidth.numberInputMin);
|
||||
const numberInputMax = useAppSelector((s) => s.config.sd.boundingBoxWidth.numberInputMax);
|
||||
const coarseStep = useAppSelector((s) => s.config.sd.boundingBoxWidth.coarseStep);
|
||||
const fineStep = useAppSelector((s) => s.config.sd.boundingBoxWidth.fineStep);
|
||||
const onChange = useCallback(
|
||||
(v: number) => {
|
||||
ctx.widthChanged(v);
|
||||
},
|
||||
[ctx]
|
||||
);
|
||||
|
||||
return (
|
||||
<FormControl isDisabled={isStaging}>
|
||||
<FormLabel>{t('parameters.width')}</FormLabel>
|
||||
<CompositeSlider
|
||||
min={sliderMin}
|
||||
max={sliderMax}
|
||||
step={coarseStep}
|
||||
fineStep={fineStep}
|
||||
value={ctx.width}
|
||||
defaultValue={optimalDimension}
|
||||
onChange={onChange}
|
||||
marks
|
||||
/>
|
||||
<CompositeNumberInput
|
||||
min={numberInputMin}
|
||||
max={numberInputMax}
|
||||
step={coarseStep}
|
||||
fineStep={fineStep}
|
||||
value={ctx.width}
|
||||
defaultValue={optimalDimension}
|
||||
onChange={onChange}
|
||||
/>
|
||||
</FormControl>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(ParamBoundingBoxWidth);
|
@ -1,27 +0,0 @@
|
||||
import { Box } from '@invoke-ai/ui-library';
|
||||
import { useCanvasGenerationMode } from 'features/canvas/hooks/useCanvasGenerationMode';
|
||||
import { memo, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const GenerationModeStatusText = () => {
|
||||
const generationMode = useCanvasGenerationMode();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const GENERATION_MODE_NAME_MAP = useMemo(
|
||||
() => ({
|
||||
txt2img: t('common.txt2img'),
|
||||
img2img: t('common.img2img'),
|
||||
inpaint: t('common.inpaint'),
|
||||
outpaint: t('common.outpaint'),
|
||||
}),
|
||||
[t]
|
||||
);
|
||||
|
||||
return (
|
||||
<Box>
|
||||
{t('accessibility.mode')}: {generationMode ? GENERATION_MODE_NAME_MAP[generationMode] : '...'}
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(GenerationModeStatusText);
|
@ -1,21 +0,0 @@
|
||||
import { useStore } from '@nanostores/react';
|
||||
import { $isPreviewVisible } from 'features/controlLayers/store/canvasV2Slice';
|
||||
import { AspectRatioIconPreview } from 'features/parameters/components/DocumentSize/AspectRatioIconPreview';
|
||||
import { memo } from 'react';
|
||||
|
||||
export const AspectRatioCanvasPreview = memo(() => {
|
||||
const isPreviewVisible = useStore($isPreviewVisible);
|
||||
|
||||
return <AspectRatioIconPreview />;
|
||||
// if (!isPreviewVisible) {
|
||||
// return <AspectRatioIconPreview />;
|
||||
// }
|
||||
|
||||
// return (
|
||||
// <Flex w="full" h="full" alignItems="center" justifyContent="center" position="relative">
|
||||
// <StageComponent asPreview />
|
||||
// </Flex>
|
||||
// );
|
||||
});
|
||||
|
||||
AspectRatioCanvasPreview.displayName = 'AspectRatioCanvasPreview';
|
@ -1,75 +0,0 @@
|
||||
import { useSize } from '@chakra-ui/react-use-size';
|
||||
import { Flex, Icon } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { AnimatePresence, motion } from 'framer-motion';
|
||||
import { memo, useMemo, useRef } from 'react';
|
||||
import { PiFrameCorners } from 'react-icons/pi';
|
||||
|
||||
import {
|
||||
BOX_SIZE_CSS_CALC,
|
||||
ICON_CONTAINER_STYLES,
|
||||
ICON_HIGH_CUTOFF,
|
||||
ICON_LOW_CUTOFF,
|
||||
MOTION_ICON_ANIMATE,
|
||||
MOTION_ICON_EXIT,
|
||||
MOTION_ICON_INITIAL,
|
||||
} from './constants';
|
||||
|
||||
export const AspectRatioIconPreview = memo(() => {
|
||||
const bbox = useAppSelector((s) => s.canvasV2.bbox);
|
||||
const containerRef = useRef<HTMLDivElement>(null);
|
||||
const containerSize = useSize(containerRef);
|
||||
|
||||
const shouldShowIcon = useMemo(
|
||||
() => bbox.aspectRatio.value < ICON_HIGH_CUTOFF && bbox.aspectRatio.value > ICON_LOW_CUTOFF,
|
||||
[bbox.aspectRatio.value]
|
||||
);
|
||||
|
||||
const { width, height } = useMemo(() => {
|
||||
if (!containerSize) {
|
||||
return { width: 0, height: 0 };
|
||||
}
|
||||
|
||||
let width = bbox.rect.width;
|
||||
let height = bbox.rect.height;
|
||||
|
||||
if (bbox.rect.width > bbox.rect.height) {
|
||||
width = containerSize.width;
|
||||
height = width / bbox.aspectRatio.value;
|
||||
} else {
|
||||
height = containerSize.height;
|
||||
width = height * bbox.aspectRatio.value;
|
||||
}
|
||||
|
||||
return { width, height };
|
||||
}, [containerSize, bbox.rect.width, bbox.rect.height, bbox.aspectRatio.value]);
|
||||
|
||||
return (
|
||||
<Flex w="full" h="full" alignItems="center" justifyContent="center" ref={containerRef}>
|
||||
<Flex
|
||||
bg="blackAlpha.400"
|
||||
borderRadius="base"
|
||||
width={`${width}px`}
|
||||
height={`${height}px`}
|
||||
alignItems="center"
|
||||
justifyContent="center"
|
||||
>
|
||||
<AnimatePresence>
|
||||
{shouldShowIcon && (
|
||||
<Flex
|
||||
as={motion.div}
|
||||
initial={MOTION_ICON_INITIAL}
|
||||
animate={MOTION_ICON_ANIMATE}
|
||||
exit={MOTION_ICON_EXIT}
|
||||
style={ICON_CONTAINER_STYLES}
|
||||
>
|
||||
<Icon as={PiFrameCorners} color="base.700" boxSize={BOX_SIZE_CSS_CALC} />
|
||||
</Flex>
|
||||
)}
|
||||
</AnimatePresence>
|
||||
</Flex>
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
AspectRatioIconPreview.displayName = 'AspectRatioIconPreview';
|
@ -1,17 +0,0 @@
|
||||
import { Flex } from '@invoke-ai/ui-library';
|
||||
import { SettingsDeveloperLogIsEnabled } from 'features/system/components/SettingsModal/SettingsDeveloperLogIsEnabled';
|
||||
import { SettingsDeveloperLogLevel } from 'features/system/components/SettingsModal/SettingsDeveloperLogLevel';
|
||||
import { SettingsDeveloperLogNamespaces } from 'features/system/components/SettingsModal/SettingsDeveloperLogNamespaces';
|
||||
import { memo } from 'react';
|
||||
|
||||
export const SettingsDeveloperContent = memo(() => {
|
||||
return (
|
||||
<Flex flexDir="column" gap={4}>
|
||||
<SettingsDeveloperLogIsEnabled />
|
||||
<SettingsDeveloperLogLevel />
|
||||
<SettingsDeveloperLogNamespaces />
|
||||
</Flex>
|
||||
);
|
||||
});
|
||||
|
||||
SettingsDeveloperContent.displayName = 'SettingsDeveloperContent';
|
@ -1,35 +0,0 @@
|
||||
import type { ComboboxOnChange } from '@invoke-ai/ui-library';
|
||||
import { Combobox, FormControl, FormLabel } from '@invoke-ai/ui-library';
|
||||
import { isLogLevel, zLogLevel } from 'app/logging/logger';
|
||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||
import { logLevelChanged } from 'features/system/store/systemSlice';
|
||||
import { memo, useCallback, useMemo } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export const SettingsLogLevelSelect = memo(() => {
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
const logLevel = useAppSelector((s) => s.system.logLevel);
|
||||
const logIsEnabled = useAppSelector((s) => s.system.logIsEnabled);
|
||||
const options = useMemo(() => zLogLevel.options.map((o) => ({ label: o, value: o })), []);
|
||||
|
||||
const value = useMemo(() => options.find((o) => o.value === logLevel), [logLevel, options]);
|
||||
|
||||
const onChange = useCallback<ComboboxOnChange>(
|
||||
(v) => {
|
||||
if (!isLogLevel(v?.value)) {
|
||||
return;
|
||||
}
|
||||
dispatch(logLevelChanged(v.value));
|
||||
},
|
||||
[dispatch]
|
||||
);
|
||||
return (
|
||||
<FormControl isDisabled={!logIsEnabled}>
|
||||
<FormLabel>{t('common.loglevel')}</FormLabel>
|
||||
<Combobox value={value} options={options} onChange={onChange} />
|
||||
</FormControl>
|
||||
);
|
||||
});
|
||||
|
||||
SettingsLogLevelSelect.displayName = 'SettingsLogLevelSelect';
|
@ -1,13 +0,0 @@
|
||||
import { Box } from '@invoke-ai/ui-library';
|
||||
import { CanvasEditor } from 'features/controlLayers/components/ControlLayersEditor';
|
||||
import { memo } from 'react';
|
||||
|
||||
const TextToImageTab = () => {
|
||||
return (
|
||||
<Box layerStyle="first" position="relative" w="full" h="full" p={2} borderRadius="base">
|
||||
<CanvasEditor />
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(TextToImageTab);
|
@ -1,25 +0,0 @@
|
||||
import { Box } from '@invoke-ai/ui-library';
|
||||
import { useAppSelector } from 'app/store/storeHooks';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { memo } from 'react';
|
||||
|
||||
const UpscalingTab = () => {
|
||||
const activeTabName = useAppSelector(activeTabNameSelector);
|
||||
|
||||
return (
|
||||
<Box
|
||||
display={activeTabName === 'upscaling' ? undefined : 'none'}
|
||||
hidden={activeTabName !== 'upscaling'}
|
||||
layerStyle="first"
|
||||
position="relative"
|
||||
w="full"
|
||||
h="full"
|
||||
p={2}
|
||||
borderRadius="base"
|
||||
>
|
||||
{/* <ImageViewer /> */}
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
||||
export default memo(UpscalingTab);
|
@ -1,20 +0,0 @@
|
||||
import { skipToken } from '@reduxjs/toolkit/query';
|
||||
import { useGetModelConfigQuery } from 'services/api/endpoints/models';
|
||||
import type { AnyModelConfig } from 'services/api/types';
|
||||
|
||||
export const useGetModelConfigWithTypeGuard = <T extends AnyModelConfig>(
|
||||
key: string | typeof skipToken,
|
||||
typeGuard: (config: AnyModelConfig) => config is T
|
||||
) => {
|
||||
const result = useGetModelConfigQuery(key ?? skipToken, {
|
||||
selectFromResult: (result) => {
|
||||
const modelConfig = result.currentData;
|
||||
return {
|
||||
...result,
|
||||
modelConfig: modelConfig && typeGuard(modelConfig) ? modelConfig : undefined,
|
||||
};
|
||||
},
|
||||
});
|
||||
|
||||
return result;
|
||||
};
|
@ -1,35 +1,34 @@
|
||||
import type { S } from 'services/api/types';
|
||||
|
||||
export type ModelLoadStartedEvent = S['ModelLoadStartedEvent'];
|
||||
export type ModelLoadCompleteEvent = S['ModelLoadCompleteEvent'];
|
||||
type ModelLoadStartedEvent = S['ModelLoadStartedEvent'];
|
||||
type ModelLoadCompleteEvent = S['ModelLoadCompleteEvent'];
|
||||
|
||||
export type InvocationStartedEvent = S['InvocationStartedEvent'];
|
||||
export type InvocationDenoiseProgressEvent = S['InvocationDenoiseProgressEvent'];
|
||||
export type InvocationCompleteEvent = S['InvocationCompleteEvent'];
|
||||
export type InvocationErrorEvent = S['InvocationErrorEvent'];
|
||||
export type ProgressImage = InvocationDenoiseProgressEvent['progress_image'];
|
||||
type InvocationStartedEvent = S['InvocationStartedEvent'];
|
||||
type InvocationDenoiseProgressEvent = S['InvocationDenoiseProgressEvent'];
|
||||
type InvocationCompleteEvent = S['InvocationCompleteEvent'];
|
||||
type InvocationErrorEvent = S['InvocationErrorEvent'];
|
||||
|
||||
export type ModelInstallDownloadStartedEvent = S['ModelInstallDownloadStartedEvent'];
|
||||
export type ModelInstallDownloadProgressEvent = S['ModelInstallDownloadProgressEvent'];
|
||||
export type ModelInstallDownloadsCompleteEvent = S['ModelInstallDownloadsCompleteEvent'];
|
||||
export type ModelInstallCompleteEvent = S['ModelInstallCompleteEvent'];
|
||||
export type ModelInstallErrorEvent = S['ModelInstallErrorEvent'];
|
||||
export type ModelInstallStartedEvent = S['ModelInstallStartedEvent'];
|
||||
export type ModelInstallCancelledEvent = S['ModelInstallCancelledEvent'];
|
||||
type ModelInstallDownloadStartedEvent = S['ModelInstallDownloadStartedEvent'];
|
||||
type ModelInstallDownloadProgressEvent = S['ModelInstallDownloadProgressEvent'];
|
||||
type ModelInstallDownloadsCompleteEvent = S['ModelInstallDownloadsCompleteEvent'];
|
||||
type ModelInstallCompleteEvent = S['ModelInstallCompleteEvent'];
|
||||
type ModelInstallErrorEvent = S['ModelInstallErrorEvent'];
|
||||
type ModelInstallStartedEvent = S['ModelInstallStartedEvent'];
|
||||
type ModelInstallCancelledEvent = S['ModelInstallCancelledEvent'];
|
||||
|
||||
export type DownloadStartedEvent = S['DownloadStartedEvent'];
|
||||
export type DownloadProgressEvent = S['DownloadProgressEvent'];
|
||||
export type DownloadCompleteEvent = S['DownloadCompleteEvent'];
|
||||
export type DownloadCancelledEvent = S['DownloadCancelledEvent'];
|
||||
export type DownloadErrorEvent = S['DownloadErrorEvent'];
|
||||
type DownloadStartedEvent = S['DownloadStartedEvent'];
|
||||
type DownloadProgressEvent = S['DownloadProgressEvent'];
|
||||
type DownloadCompleteEvent = S['DownloadCompleteEvent'];
|
||||
type DownloadCancelledEvent = S['DownloadCancelledEvent'];
|
||||
type DownloadErrorEvent = S['DownloadErrorEvent'];
|
||||
|
||||
export type QueueItemStatusChangedEvent = S['QueueItemStatusChangedEvent'];
|
||||
export type QueueClearedEvent = S['QueueClearedEvent'];
|
||||
export type BatchEnqueuedEvent = S['BatchEnqueuedEvent'];
|
||||
type QueueItemStatusChangedEvent = S['QueueItemStatusChangedEvent'];
|
||||
type QueueClearedEvent = S['QueueClearedEvent'];
|
||||
type BatchEnqueuedEvent = S['BatchEnqueuedEvent'];
|
||||
|
||||
export type BulkDownloadStartedEvent = S['BulkDownloadStartedEvent'];
|
||||
export type BulkDownloadCompleteEvent = S['BulkDownloadCompleteEvent'];
|
||||
export type BulkDownloadFailedEvent = S['BulkDownloadErrorEvent'];
|
||||
type BulkDownloadStartedEvent = S['BulkDownloadStartedEvent'];
|
||||
type BulkDownloadCompleteEvent = S['BulkDownloadCompleteEvent'];
|
||||
type BulkDownloadFailedEvent = S['BulkDownloadErrorEvent'];
|
||||
|
||||
type ClientEmitSubscribeQueue = {
|
||||
queue_id: string;
|
||||
|
Loading…
Reference in New Issue
Block a user