refactor redundant code and fix typechecking errors

This commit is contained in:
Lincoln Stein 2024-05-29 10:29:54 -04:00 committed by Kent Keirsey
parent e28737fc8b
commit f13427e3f4

View File

@ -50,6 +50,7 @@ from invokeai.app.invocations.primitives import DenoiseMaskOutput, ImageOutput,
from invokeai.app.invocations.t2i_adapter import T2IAdapterField from invokeai.app.invocations.t2i_adapter import T2IAdapterField
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType, LoadedModel from invokeai.backend.model_manager import BaseModelType, LoadedModel
from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType from invokeai.backend.model_manager.config import MainConfigBase, ModelVariantType
@ -674,22 +675,13 @@ class DenoiseLatentsInvocation(BaseInvocation):
def prep_ip_adapter_image_prompts( def prep_ip_adapter_image_prompts(
self, self,
context: InvocationContext, context: InvocationContext,
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]], ip_adapters: List[IPAdapterField],
) -> List[Tuple[torch.Tensor, torch.Tensor]]: ) -> List[Tuple[torch.Tensor, torch.Tensor]]:
"""Run the IPAdapter CLIPVisionModel, returning image prompt embeddings.""" """Run the IPAdapter CLIPVisionModel, returning image prompt embeddings."""
# ip_adapter could be a list or a single IPAdapterField. Normalize to a list here.
if ip_adapter is None:
return []
if not isinstance(ip_adapter, list):
ip_adapter = [ip_adapter]
if len(ip_adapter) == 0:
return []
image_prompts = [] image_prompts = []
for single_ip_adapter in ip_adapter: for single_ip_adapter in ip_adapters:
with context.models.load(single_ip_adapter.ip_adapter_model) as ip_adapter_model: with context.models.load(single_ip_adapter.ip_adapter_model) as ip_adapter_model:
assert isinstance(ip_adapter_model, IPAdapter)
image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model) image_encoder_model_info = context.models.load(single_ip_adapter.image_encoder_model)
# `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here. # `single_ip_adapter.image` could be a list or a single ImageField. Normalize to a list here.
single_ipa_image_fields = single_ip_adapter.image single_ipa_image_fields = single_ip_adapter.image
@ -710,36 +702,23 @@ class DenoiseLatentsInvocation(BaseInvocation):
def prep_ip_adapter_data( def prep_ip_adapter_data(
self, self,
context: InvocationContext, context: InvocationContext,
ip_adapter: Optional[Union[IPAdapterField, list[IPAdapterField]]], ip_adapters: List[IPAdapterField],
image_prompts: List[Tuple[torch.Tensor, torch.Tensor]],
exit_stack: ExitStack, exit_stack: ExitStack,
latent_height: int, latent_height: int,
latent_width: int, latent_width: int,
dtype: torch.dtype, dtype: torch.dtype,
image_prompts: List[Tuple[torch.Tensor, torch.Tensor]], ) -> Optional[List[IPAdapterData]]:
) -> Optional[list[IPAdapterData]]: """If IP-Adapter is enabled, then this function loads the requisite models and adds the image prompt conditioning data."""
"""If IP-Adapter is enabled, then this function loads the requisite models, and adds the image prompt embeddings
to the `conditioning_data` (in-place).
"""
if ip_adapter is None:
return None
# ip_adapter could be a list or a single IPAdapterField. Normalize to a list here.
if not isinstance(ip_adapter, list):
ip_adapter = [ip_adapter]
if len(ip_adapter) == 0:
return None
ip_adapter_data_list = [] ip_adapter_data_list = []
assert len(ip_adapter) == len(image_prompts) assert len(ip_adapters) == len(image_prompts)
for single_ip_adapter in ip_adapter: for single_ip_adapter in ip_adapters:
ip_adapter_model = exit_stack.enter_context(context.models.load(single_ip_adapter.ip_adapter_model)) ip_adapter_model = exit_stack.enter_context(context.models.load(single_ip_adapter.ip_adapter_model))
image_prompt_embeds, uncond_image_prompt_embeds = image_prompts.pop(0) image_prompt_embeds, uncond_image_prompt_embeds = image_prompts.pop(0)
mask = single_ip_adapter.mask mask_field = single_ip_adapter.mask
if mask is not None: mask = context.tensors.load(mask_field.tensor_name) if mask_field is not None else None
mask = context.tensors.load(mask.tensor_name)
mask = self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype) mask = self._preprocess_regional_prompt_mask(mask, latent_height, latent_width, dtype=dtype)
ip_adapter_data_list.append( ip_adapter_data_list.append(
@ -754,7 +733,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
) )
) )
return ip_adapter_data_list return ip_adapter_data_list if len(ip_adapter_data_list) > 0 else None
def run_t2i_adapters( def run_t2i_adapters(
self, self,
@ -932,7 +911,15 @@ class DenoiseLatentsInvocation(BaseInvocation):
do_classifier_free_guidance=True, do_classifier_free_guidance=True,
) )
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapter=self.ip_adapter) ip_adapters: List[IPAdapterField] = []
if self.ip_adapter is not None:
# ip_adapter could be a list or a single IPAdapterField. Normalize to a list here.
if isinstance(self.ip_adapter, list):
ip_adapters = self.ip_adapter
else:
ip_adapters = [self.ip_adapter]
image_prompts = self.prep_ip_adapter_image_prompts(context=context, ip_adapters=ip_adapters)
# get the unet's config so that we can pass the base to dispatch_progress() # get the unet's config so that we can pass the base to dispatch_progress()
unet_config = context.models.get_config(self.unet.unet.key) unet_config = context.models.get_config(self.unet.unet.key)
@ -992,12 +979,12 @@ class DenoiseLatentsInvocation(BaseInvocation):
ip_adapter_data = self.prep_ip_adapter_data( ip_adapter_data = self.prep_ip_adapter_data(
context=context, context=context,
ip_adapter=self.ip_adapter, ip_adapters=ip_adapters,
image_prompts=image_prompts,
exit_stack=exit_stack, exit_stack=exit_stack,
latent_height=latent_height, latent_height=latent_height,
latent_width=latent_width, latent_width=latent_width,
dtype=unet.dtype, dtype=unet.dtype,
image_prompts=image_prompts,
) )
num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler( num_inference_steps, timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler(