mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Port the command-line tools to use model_manager2 (#5546)
* Port the command-line tools to use model_manager2 1.Reimplement the following: - invokeai-model-install - invokeai-merge - invokeai-ti To avoid breaking the original modeal manager, the udpated tools have been renamed invokeai-model-install2 and invokeai-merge2. The textual inversion training script should continue to work with existing installations. The "starter" models now live in `invokeai/configs/INITIAL_MODELS2.yaml`. When the full model manager 2 is in place and working, I'll rename these files and commands. 2. Add the `merge` route to the web API. This will merge two or three models, resulting a new one. - Note that because the model installer selectively installs the `fp16` variant of models (rather than both 16- and 32-bit versions as previous), the diffusers merge script will choke on any huggingface diffuserse models that were downloaded with the new installer. Previously-downloaded models should continue to merge correctly. I have a PR upstream https://github.com/huggingface/diffusers/pull/6670 to fix this. 3. (more important!) During implementation of the CLI tools, found and fixed a number of small runtime bugs in the model_manager2 implementation: - During model database migration, if a registered models file was not found on disk, the migration would be aborted. Now the offending model is skipped with a log warning. - Caught and fixed a condition in which the installer would download the entire diffusers repo when the user provided a single `.safetensors` file URL. - Caught and fixed a condition in which the installer would raise an exception and stop the app when a request for an unknown model's metadata was passed to Civitai. Now an error is logged and the installer continues. - Replaced the LoWRA starter LoRA with FlatColor. The former has been removed from Civitai. * fix ruff issue --------- Co-authored-by: Lincoln Stein <lstein@gmail.com>
This commit is contained in:
177
invokeai/backend/model_manager/merge.py
Normal file
177
invokeai/backend/model_manager/merge.py
Normal file
@ -0,0 +1,177 @@
|
||||
"""
|
||||
invokeai.backend.model_manager.merge exports:
|
||||
merge_diffusion_models() -- combine multiple models by location and return a pipeline object
|
||||
merge_diffusion_models_and_commit() -- combine multiple models by ModelManager ID and write to models.yaml
|
||||
|
||||
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
|
||||
"""
|
||||
|
||||
import warnings
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Any, List, Optional, Set
|
||||
|
||||
import torch
|
||||
from diffusers import AutoPipelineForText2Image
|
||||
from diffusers import logging as dlogging
|
||||
|
||||
from invokeai.app.services.model_install import ModelInstallServiceBase
|
||||
from invokeai.backend.util.devices import choose_torch_device, torch_dtype
|
||||
|
||||
from . import (
|
||||
AnyModelConfig,
|
||||
BaseModelType,
|
||||
ModelType,
|
||||
ModelVariantType,
|
||||
)
|
||||
from .config import MainDiffusersConfig
|
||||
|
||||
|
||||
class MergeInterpolationMethod(str, Enum):
|
||||
WeightedSum = "weighted_sum"
|
||||
Sigmoid = "sigmoid"
|
||||
InvSigmoid = "inv_sigmoid"
|
||||
AddDifference = "add_difference"
|
||||
|
||||
|
||||
class ModelMerger(object):
|
||||
"""Wrapper class for model merge function."""
|
||||
|
||||
def __init__(self, installer: ModelInstallServiceBase):
|
||||
"""
|
||||
Initialize a ModelMerger object.
|
||||
|
||||
:param store: Underlying storage manager for the running process.
|
||||
:param config: InvokeAIAppConfig object (if not provided, default will be selected).
|
||||
"""
|
||||
self._installer = installer
|
||||
|
||||
def merge_diffusion_models(
|
||||
self,
|
||||
model_paths: List[Path],
|
||||
alpha: float = 0.5,
|
||||
interp: Optional[MergeInterpolationMethod] = None,
|
||||
force: bool = False,
|
||||
variant: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> Any: # pipe.merge is an untyped function.
|
||||
"""
|
||||
:param model_paths: up to three models, designated by their local paths or HuggingFace repo_ids
|
||||
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
||||
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
||||
:param interp: The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
|
||||
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
|
||||
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
||||
|
||||
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
|
||||
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
|
||||
"""
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
verbosity = dlogging.get_verbosity()
|
||||
dlogging.set_verbosity_error()
|
||||
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
|
||||
|
||||
# Note that checkpoint_merger will not work with downloaded HuggingFace fp16 models
|
||||
# until upstream https://github.com/huggingface/diffusers/pull/6670 is merged and released.
|
||||
pipe = AutoPipelineForText2Image.from_pretrained(
|
||||
model_paths[0],
|
||||
custom_pipeline="checkpoint_merger",
|
||||
torch_dtype=dtype,
|
||||
variant=variant,
|
||||
)
|
||||
merged_pipe = pipe.merge(
|
||||
pretrained_model_name_or_path_list=model_paths,
|
||||
alpha=alpha,
|
||||
interp=interp.value if interp else None, # diffusers API treats None as "weighted sum"
|
||||
force=force,
|
||||
torch_dtype=dtype,
|
||||
variant=variant,
|
||||
**kwargs,
|
||||
)
|
||||
dlogging.set_verbosity(verbosity)
|
||||
return merged_pipe
|
||||
|
||||
def merge_diffusion_models_and_save(
|
||||
self,
|
||||
model_keys: List[str],
|
||||
merged_model_name: str,
|
||||
alpha: float = 0.5,
|
||||
force: bool = False,
|
||||
interp: Optional[MergeInterpolationMethod] = None,
|
||||
merge_dest_directory: Optional[Path] = None,
|
||||
variant: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> AnyModelConfig:
|
||||
"""
|
||||
:param models: up to three models, designated by their InvokeAI models.yaml model name
|
||||
:param merged_model_name: name for new model
|
||||
:param alpha: The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
||||
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
||||
:param interp: The interpolation method to use for the merging. Supports "weighted_average", "sigmoid", "inv_sigmoid", "add_difference" and None.
|
||||
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported. Add_difference is A+(B-C).
|
||||
:param force: Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
||||
:param merge_dest_directory: Save the merged model to the designated directory (with 'merged_model_name' appended)
|
||||
**kwargs - the default DiffusionPipeline.get_config_dict kwargs:
|
||||
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map
|
||||
"""
|
||||
model_paths: List[Path] = []
|
||||
model_names: List[str] = []
|
||||
config = self._installer.app_config
|
||||
store = self._installer.record_store
|
||||
base_models: Set[BaseModelType] = set()
|
||||
vae = None
|
||||
variant = None if self._installer.app_config.full_precision else "fp16"
|
||||
|
||||
assert (
|
||||
len(model_keys) <= 2 or interp == MergeInterpolationMethod.AddDifference
|
||||
), "When merging three models, only the 'add_difference' merge method is supported"
|
||||
|
||||
for key in model_keys:
|
||||
info = store.get_model(key)
|
||||
model_names.append(info.name)
|
||||
assert isinstance(
|
||||
info, MainDiffusersConfig
|
||||
), f"{info.name} ({info.key}) is not a diffusers model. It must be optimized before merging"
|
||||
assert info.variant == ModelVariantType(
|
||||
"normal"
|
||||
), f"{info.name} ({info.key}) is a {info.variant} model, which cannot currently be merged"
|
||||
|
||||
# pick up the first model's vae
|
||||
if key == model_keys[0]:
|
||||
vae = info.vae
|
||||
|
||||
# tally base models used
|
||||
base_models.add(info.base)
|
||||
model_paths.extend([config.models_path / info.path])
|
||||
|
||||
assert len(base_models) == 1, f"All models to merge must have same base model, but found bases {base_models}"
|
||||
base_model = base_models.pop()
|
||||
|
||||
merge_method = None if interp == "weighted_sum" else MergeInterpolationMethod(interp)
|
||||
merged_pipe = self.merge_diffusion_models(model_paths, alpha, merge_method, force, variant=variant, **kwargs)
|
||||
dump_path = (
|
||||
Path(merge_dest_directory)
|
||||
if merge_dest_directory
|
||||
else config.models_path / base_model.value / ModelType.Main.value
|
||||
)
|
||||
dump_path.mkdir(parents=True, exist_ok=True)
|
||||
dump_path = dump_path / merged_model_name
|
||||
|
||||
dtype = torch.float16 if variant == "fp16" else torch_dtype(choose_torch_device())
|
||||
merged_pipe.save_pretrained(dump_path.as_posix(), safe_serialization=True, torch_dtype=dtype, variant=variant)
|
||||
|
||||
# register model and get its unique key
|
||||
key = self._installer.register_path(dump_path)
|
||||
|
||||
# update model's config
|
||||
model_config = self._installer.record_store.get_model(key)
|
||||
model_config.update(
|
||||
{
|
||||
"name": merged_model_name,
|
||||
"description": f"Merge of models {', '.join(model_names)}",
|
||||
"vae": vae,
|
||||
}
|
||||
)
|
||||
self._installer.record_store.update_model(key, model_config)
|
||||
return model_config
|
@ -170,6 +170,8 @@ class CivitaiMetadataFetch(ModelMetadataFetchBase):
|
||||
if model_id is None:
|
||||
version_url = CIVITAI_VERSION_ENDPOINT + str(version_id)
|
||||
version = self._requests.get(version_url).json()
|
||||
if error := version.get("error"):
|
||||
raise UnknownMetadataException(error)
|
||||
model_id = version["modelId"]
|
||||
|
||||
model_url = CIVITAI_MODEL_ENDPOINT + str(model_id)
|
||||
|
Reference in New Issue
Block a user