mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Support SDXL models (#3714)
This is a WIP to add SDXL support. Tasks: - [x] SDXL model loading support - [x] SDXL model installation - [x] SDXL model loader - [x] SDXL base invocations for text2latent and latent2latent - [ ] SDXL refiner invocations for text2latent and latent2latent - [x] Compel support / pooled embeddings - [ ] Linear UI graph for SDXL - [ ] Documentation
This commit is contained in:
commit
f287c0174b
@ -14,6 +14,7 @@ from invokeai.backend.model_management.models import (
|
|||||||
OPENAPI_MODEL_CONFIGS,
|
OPENAPI_MODEL_CONFIGS,
|
||||||
SchedulerPredictionType,
|
SchedulerPredictionType,
|
||||||
ModelNotFoundException,
|
ModelNotFoundException,
|
||||||
|
InvalidModelException,
|
||||||
)
|
)
|
||||||
from invokeai.backend.model_management import MergeInterpolationMethod
|
from invokeai.backend.model_management import MergeInterpolationMethod
|
||||||
|
|
||||||
@ -36,11 +37,16 @@ class ModelsList(BaseModel):
|
|||||||
responses={200: {"model": ModelsList }},
|
responses={200: {"model": ModelsList }},
|
||||||
)
|
)
|
||||||
async def list_models(
|
async def list_models(
|
||||||
base_model: Optional[BaseModelType] = Query(default=None, description="Base model"),
|
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
|
||||||
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
|
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
|
||||||
) -> ModelsList:
|
) -> ModelsList:
|
||||||
"""Gets a list of models"""
|
"""Gets a list of models"""
|
||||||
models_raw = ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)
|
if base_models and len(base_models)>0:
|
||||||
|
models_raw = list()
|
||||||
|
for base_model in base_models:
|
||||||
|
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type))
|
||||||
|
else:
|
||||||
|
models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type)
|
||||||
models = parse_obj_as(ModelsList, { "models": models_raw })
|
models = parse_obj_as(ModelsList, { "models": models_raw })
|
||||||
return models
|
return models
|
||||||
|
|
||||||
@ -123,6 +129,7 @@ async def update_model(
|
|||||||
responses= {
|
responses= {
|
||||||
201: {"description" : "The model imported successfully"},
|
201: {"description" : "The model imported successfully"},
|
||||||
404: {"description" : "The model could not be found"},
|
404: {"description" : "The model could not be found"},
|
||||||
|
415: {"description" : "Unrecognized file/folder format"},
|
||||||
424: {"description" : "The model appeared to import successfully, but could not be found in the model manager"},
|
424: {"description" : "The model appeared to import successfully, but could not be found in the model manager"},
|
||||||
409: {"description" : "There is already a model corresponding to this path or repo_id"},
|
409: {"description" : "There is already a model corresponding to this path or repo_id"},
|
||||||
},
|
},
|
||||||
@ -149,7 +156,7 @@ async def import_model(
|
|||||||
|
|
||||||
if not info:
|
if not info:
|
||||||
logger.error("Import failed")
|
logger.error("Import failed")
|
||||||
raise HTTPException(status_code=424)
|
raise HTTPException(status_code=415)
|
||||||
|
|
||||||
logger.info(f'Successfully imported {location}, got {info}')
|
logger.info(f'Successfully imported {location}, got {info}')
|
||||||
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
|
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
|
||||||
@ -162,6 +169,9 @@ async def import_model(
|
|||||||
except ModelNotFoundException as e:
|
except ModelNotFoundException as e:
|
||||||
logger.error(str(e))
|
logger.error(str(e))
|
||||||
raise HTTPException(status_code=404, detail=str(e))
|
raise HTTPException(status_code=404, detail=str(e))
|
||||||
|
except InvalidModelException as e:
|
||||||
|
logger.error(str(e))
|
||||||
|
raise HTTPException(status_code=415)
|
||||||
except ValueError as e:
|
except ValueError as e:
|
||||||
logger.error(str(e))
|
logger.error(str(e))
|
||||||
raise HTTPException(status_code=409, detail=str(e))
|
raise HTTPException(status_code=409, detail=str(e))
|
||||||
|
@ -1,8 +1,8 @@
|
|||||||
from typing import Literal, Optional, Union, List
|
from typing import Literal, Optional, Union, List, Annotated
|
||||||
from pydantic import BaseModel, Field
|
from pydantic import BaseModel, Field
|
||||||
import re
|
import re
|
||||||
import torch
|
import torch
|
||||||
from compel import Compel
|
from compel import Compel, ReturnedEmbeddingsType
|
||||||
from compel.prompt_parser import (Blend, Conjunction,
|
from compel.prompt_parser import (Blend, Conjunction,
|
||||||
CrossAttentionControlSubstitute,
|
CrossAttentionControlSubstitute,
|
||||||
FlattenedPrompt, Fragment)
|
FlattenedPrompt, Fragment)
|
||||||
@ -14,6 +14,7 @@ from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
|
|||||||
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
||||||
InvocationConfig, InvocationContext)
|
InvocationConfig, InvocationContext)
|
||||||
from .model import ClipField
|
from .model import ClipField
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
|
||||||
class ConditioningField(BaseModel):
|
class ConditioningField(BaseModel):
|
||||||
@ -23,6 +24,34 @@ class ConditioningField(BaseModel):
|
|||||||
class Config:
|
class Config:
|
||||||
schema_extra = {"required": ["conditioning_name"]}
|
schema_extra = {"required": ["conditioning_name"]}
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class BasicConditioningInfo:
|
||||||
|
#type: Literal["basic_conditioning"] = "basic_conditioning"
|
||||||
|
embeds: torch.Tensor
|
||||||
|
extra_conditioning: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo]
|
||||||
|
# weight: float
|
||||||
|
# mode: ConditioningAlgo
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class SDXLConditioningInfo(BasicConditioningInfo):
|
||||||
|
#type: Literal["sdxl_conditioning"] = "sdxl_conditioning"
|
||||||
|
pooled_embeds: torch.Tensor
|
||||||
|
add_time_ids: torch.Tensor
|
||||||
|
|
||||||
|
ConditioningInfoType = Annotated[
|
||||||
|
Union[BasicConditioningInfo, SDXLConditioningInfo],
|
||||||
|
Field(discriminator="type")
|
||||||
|
]
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ConditioningFieldData:
|
||||||
|
conditionings: List[Union[BasicConditioningInfo, SDXLConditioningInfo]]
|
||||||
|
#unconditioned: Optional[torch.Tensor]
|
||||||
|
|
||||||
|
#class ConditioningAlgo(str, Enum):
|
||||||
|
# Compose = "compose"
|
||||||
|
# ComposeEx = "compose_ex"
|
||||||
|
# PerpNeg = "perp_neg"
|
||||||
|
|
||||||
class CompelOutput(BaseInvocationOutput):
|
class CompelOutput(BaseInvocationOutput):
|
||||||
"""Compel parser output"""
|
"""Compel parser output"""
|
||||||
@ -119,10 +148,17 @@ class CompelInvocation(BaseInvocation):
|
|||||||
cross_attention_control_args=options.get(
|
cross_attention_control_args=options.get(
|
||||||
"cross_attention_control", None),)
|
"cross_attention_control", None),)
|
||||||
|
|
||||||
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
conditioning_data = ConditioningFieldData(
|
||||||
|
conditionings=[
|
||||||
|
BasicConditioningInfo(
|
||||||
|
embeds=c,
|
||||||
|
extra_conditioning=ec,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
# TODO: hacky but works ;D maybe rename latents somehow?
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
||||||
context.services.latents.save(conditioning_name, (c, ec))
|
context.services.latents.save(conditioning_name, conditioning_data)
|
||||||
|
|
||||||
return CompelOutput(
|
return CompelOutput(
|
||||||
conditioning=ConditioningField(
|
conditioning=ConditioningField(
|
||||||
@ -130,6 +166,389 @@ class CompelInvocation(BaseInvocation):
|
|||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
class SDXLPromptInvocationBase:
|
||||||
|
def run_clip_raw(self, context, clip_field, prompt, get_pooled):
|
||||||
|
tokenizer_info = context.services.model_manager.get_model(
|
||||||
|
**clip_field.tokenizer.dict(),
|
||||||
|
)
|
||||||
|
text_encoder_info = context.services.model_manager.get_model(
|
||||||
|
**clip_field.text_encoder.dict(),
|
||||||
|
)
|
||||||
|
|
||||||
|
def _lora_loader():
|
||||||
|
for lora in clip_field.loras:
|
||||||
|
lora_info = context.services.model_manager.get_model(
|
||||||
|
**lora.dict(exclude={"weight"}))
|
||||||
|
yield (lora_info.context.model, lora.weight)
|
||||||
|
del lora_info
|
||||||
|
return
|
||||||
|
|
||||||
|
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||||
|
|
||||||
|
ti_list = []
|
||||||
|
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
|
||||||
|
name = trigger[1:-1]
|
||||||
|
try:
|
||||||
|
ti_list.append(
|
||||||
|
context.services.model_manager.get_model(
|
||||||
|
model_name=name,
|
||||||
|
base_model=clip_field.text_encoder.base_model,
|
||||||
|
model_type=ModelType.TextualInversion,
|
||||||
|
).context.model
|
||||||
|
)
|
||||||
|
except ModelNotFoundException:
|
||||||
|
# print(e)
|
||||||
|
#import traceback
|
||||||
|
#print(traceback.format_exc())
|
||||||
|
print(f"Warn: trigger: \"{trigger}\" not found")
|
||||||
|
|
||||||
|
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
|
||||||
|
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
|
||||||
|
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),\
|
||||||
|
text_encoder_info as text_encoder:
|
||||||
|
|
||||||
|
text_inputs = tokenizer(
|
||||||
|
prompt,
|
||||||
|
padding="max_length",
|
||||||
|
max_length=tokenizer.model_max_length,
|
||||||
|
truncation=True,
|
||||||
|
return_tensors="pt",
|
||||||
|
)
|
||||||
|
text_input_ids = text_inputs.input_ids
|
||||||
|
prompt_embeds = text_encoder(
|
||||||
|
text_input_ids.to(text_encoder.device),
|
||||||
|
output_hidden_states=True,
|
||||||
|
)
|
||||||
|
if get_pooled:
|
||||||
|
c_pooled = prompt_embeds[0]
|
||||||
|
else:
|
||||||
|
c_pooled = None
|
||||||
|
c = prompt_embeds.hidden_states[-2]
|
||||||
|
|
||||||
|
del tokenizer
|
||||||
|
del text_encoder
|
||||||
|
del tokenizer_info
|
||||||
|
del text_encoder_info
|
||||||
|
|
||||||
|
return c, c_pooled, None
|
||||||
|
|
||||||
|
def run_clip_compel(self, context, clip_field, prompt, get_pooled):
|
||||||
|
tokenizer_info = context.services.model_manager.get_model(
|
||||||
|
**clip_field.tokenizer.dict(),
|
||||||
|
)
|
||||||
|
text_encoder_info = context.services.model_manager.get_model(
|
||||||
|
**clip_field.text_encoder.dict(),
|
||||||
|
)
|
||||||
|
|
||||||
|
def _lora_loader():
|
||||||
|
for lora in clip_field.loras:
|
||||||
|
lora_info = context.services.model_manager.get_model(
|
||||||
|
**lora.dict(exclude={"weight"}))
|
||||||
|
yield (lora_info.context.model, lora.weight)
|
||||||
|
del lora_info
|
||||||
|
return
|
||||||
|
|
||||||
|
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
||||||
|
|
||||||
|
ti_list = []
|
||||||
|
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
|
||||||
|
name = trigger[1:-1]
|
||||||
|
try:
|
||||||
|
ti_list.append(
|
||||||
|
context.services.model_manager.get_model(
|
||||||
|
model_name=name,
|
||||||
|
base_model=clip_field.text_encoder.base_model,
|
||||||
|
model_type=ModelType.TextualInversion,
|
||||||
|
).context.model
|
||||||
|
)
|
||||||
|
except ModelNotFoundException:
|
||||||
|
# print(e)
|
||||||
|
#import traceback
|
||||||
|
#print(traceback.format_exc())
|
||||||
|
print(f"Warn: trigger: \"{trigger}\" not found")
|
||||||
|
|
||||||
|
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
|
||||||
|
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
|
||||||
|
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),\
|
||||||
|
text_encoder_info as text_encoder:
|
||||||
|
|
||||||
|
compel = Compel(
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
text_encoder=text_encoder,
|
||||||
|
textual_inversion_manager=ti_manager,
|
||||||
|
dtype_for_device_getter=torch_dtype,
|
||||||
|
truncate_long_prompts=True, # TODO:
|
||||||
|
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
|
||||||
|
requires_pooled=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
conjunction = Compel.parse_prompt_string(prompt)
|
||||||
|
|
||||||
|
if context.services.configuration.log_tokenization:
|
||||||
|
# TODO: better logging for and syntax
|
||||||
|
for prompt_obj in conjunction.prompts:
|
||||||
|
log_tokenization_for_prompt_object(prompt_obj, tokenizer)
|
||||||
|
|
||||||
|
# TODO: ask for optimizations? to not run text_encoder twice
|
||||||
|
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
|
||||||
|
if get_pooled:
|
||||||
|
c_pooled = compel.conditioning_provider.get_pooled_embeddings([prompt])
|
||||||
|
else:
|
||||||
|
c_pooled = None
|
||||||
|
|
||||||
|
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
|
||||||
|
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
|
||||||
|
cross_attention_control_args=options.get("cross_attention_control", None),
|
||||||
|
)
|
||||||
|
|
||||||
|
del tokenizer
|
||||||
|
del text_encoder
|
||||||
|
del tokenizer_info
|
||||||
|
del text_encoder_info
|
||||||
|
|
||||||
|
return c, c_pooled, ec
|
||||||
|
|
||||||
|
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||||
|
"""Parse prompt using compel package to conditioning."""
|
||||||
|
|
||||||
|
type: Literal["sdxl_compel_prompt"] = "sdxl_compel_prompt"
|
||||||
|
|
||||||
|
prompt: str = Field(default="", description="Prompt")
|
||||||
|
style: str = Field(default="", description="Style prompt")
|
||||||
|
original_width: int = Field(1024, description="")
|
||||||
|
original_height: int = Field(1024, description="")
|
||||||
|
crop_top: int = Field(0, description="")
|
||||||
|
crop_left: int = Field(0, description="")
|
||||||
|
target_width: int = Field(1024, description="")
|
||||||
|
target_height: int = Field(1024, description="")
|
||||||
|
clip1: ClipField = Field(None, description="Clip to use")
|
||||||
|
clip2: ClipField = Field(None, description="Clip to use")
|
||||||
|
|
||||||
|
# Schema customisation
|
||||||
|
class Config(InvocationConfig):
|
||||||
|
schema_extra = {
|
||||||
|
"ui": {
|
||||||
|
"title": "SDXL Prompt (Compel)",
|
||||||
|
"tags": ["prompt", "compel"],
|
||||||
|
"type_hints": {
|
||||||
|
"model": "model"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
||||||
|
c1, c1_pooled, ec1 = self.run_clip_compel(context, self.clip1, self.prompt, False)
|
||||||
|
if self.style.strip() == "":
|
||||||
|
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.prompt, True)
|
||||||
|
else:
|
||||||
|
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True)
|
||||||
|
|
||||||
|
original_size = (self.original_height, self.original_width)
|
||||||
|
crop_coords = (self.crop_top, self.crop_left)
|
||||||
|
target_size = (self.target_height, self.target_width)
|
||||||
|
|
||||||
|
add_time_ids = torch.tensor([
|
||||||
|
original_size + crop_coords + target_size
|
||||||
|
])
|
||||||
|
|
||||||
|
conditioning_data = ConditioningFieldData(
|
||||||
|
conditionings=[
|
||||||
|
SDXLConditioningInfo(
|
||||||
|
embeds=torch.cat([c1, c2], dim=-1),
|
||||||
|
pooled_embeds=c2_pooled,
|
||||||
|
add_time_ids=add_time_ids,
|
||||||
|
extra_conditioning=ec1,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
||||||
|
context.services.latents.save(conditioning_name, conditioning_data)
|
||||||
|
|
||||||
|
return CompelOutput(
|
||||||
|
conditioning=ConditioningField(
|
||||||
|
conditioning_name=conditioning_name,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||||
|
"""Parse prompt using compel package to conditioning."""
|
||||||
|
|
||||||
|
type: Literal["sdxl_refiner_compel_prompt"] = "sdxl_refiner_compel_prompt"
|
||||||
|
|
||||||
|
style: str = Field(default="", description="Style prompt") # TODO: ?
|
||||||
|
original_width: int = Field(1024, description="")
|
||||||
|
original_height: int = Field(1024, description="")
|
||||||
|
crop_top: int = Field(0, description="")
|
||||||
|
crop_left: int = Field(0, description="")
|
||||||
|
aesthetic_score: float = Field(6.0, description="")
|
||||||
|
clip2: ClipField = Field(None, description="Clip to use")
|
||||||
|
|
||||||
|
# Schema customisation
|
||||||
|
class Config(InvocationConfig):
|
||||||
|
schema_extra = {
|
||||||
|
"ui": {
|
||||||
|
"title": "SDXL Refiner Prompt (Compel)",
|
||||||
|
"tags": ["prompt", "compel"],
|
||||||
|
"type_hints": {
|
||||||
|
"model": "model"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
||||||
|
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True)
|
||||||
|
|
||||||
|
original_size = (self.original_height, self.original_width)
|
||||||
|
crop_coords = (self.crop_top, self.crop_left)
|
||||||
|
|
||||||
|
add_time_ids = torch.tensor([
|
||||||
|
original_size + crop_coords + (self.aesthetic_score,)
|
||||||
|
])
|
||||||
|
|
||||||
|
conditioning_data = ConditioningFieldData(
|
||||||
|
conditionings=[
|
||||||
|
SDXLConditioningInfo(
|
||||||
|
embeds=c2,
|
||||||
|
pooled_embeds=c2_pooled,
|
||||||
|
add_time_ids=add_time_ids,
|
||||||
|
extra_conditioning=ec2, # or None
|
||||||
|
)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
||||||
|
context.services.latents.save(conditioning_name, conditioning_data)
|
||||||
|
|
||||||
|
return CompelOutput(
|
||||||
|
conditioning=ConditioningField(
|
||||||
|
conditioning_name=conditioning_name,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||||
|
"""Pass unmodified prompt to conditioning without compel processing."""
|
||||||
|
|
||||||
|
type: Literal["sdxl_raw_prompt"] = "sdxl_raw_prompt"
|
||||||
|
|
||||||
|
prompt: str = Field(default="", description="Prompt")
|
||||||
|
style: str = Field(default="", description="Style prompt")
|
||||||
|
original_width: int = Field(1024, description="")
|
||||||
|
original_height: int = Field(1024, description="")
|
||||||
|
crop_top: int = Field(0, description="")
|
||||||
|
crop_left: int = Field(0, description="")
|
||||||
|
target_width: int = Field(1024, description="")
|
||||||
|
target_height: int = Field(1024, description="")
|
||||||
|
clip1: ClipField = Field(None, description="Clip to use")
|
||||||
|
clip2: ClipField = Field(None, description="Clip to use")
|
||||||
|
|
||||||
|
# Schema customisation
|
||||||
|
class Config(InvocationConfig):
|
||||||
|
schema_extra = {
|
||||||
|
"ui": {
|
||||||
|
"title": "SDXL Prompt (Raw)",
|
||||||
|
"tags": ["prompt", "compel"],
|
||||||
|
"type_hints": {
|
||||||
|
"model": "model"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
||||||
|
c1, c1_pooled, ec1 = self.run_clip_raw(context, self.clip1, self.prompt, False)
|
||||||
|
if self.style.strip() == "":
|
||||||
|
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.prompt, True)
|
||||||
|
else:
|
||||||
|
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True)
|
||||||
|
|
||||||
|
original_size = (self.original_height, self.original_width)
|
||||||
|
crop_coords = (self.crop_top, self.crop_left)
|
||||||
|
target_size = (self.target_height, self.target_width)
|
||||||
|
|
||||||
|
add_time_ids = torch.tensor([
|
||||||
|
original_size + crop_coords + target_size
|
||||||
|
])
|
||||||
|
|
||||||
|
conditioning_data = ConditioningFieldData(
|
||||||
|
conditionings=[
|
||||||
|
SDXLConditioningInfo(
|
||||||
|
embeds=torch.cat([c1, c2], dim=-1),
|
||||||
|
pooled_embeds=c2_pooled,
|
||||||
|
add_time_ids=add_time_ids,
|
||||||
|
extra_conditioning=ec1,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
||||||
|
context.services.latents.save(conditioning_name, conditioning_data)
|
||||||
|
|
||||||
|
return CompelOutput(
|
||||||
|
conditioning=ConditioningField(
|
||||||
|
conditioning_name=conditioning_name,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
||||||
|
"""Parse prompt using compel package to conditioning."""
|
||||||
|
|
||||||
|
type: Literal["sdxl_refiner_raw_prompt"] = "sdxl_refiner_raw_prompt"
|
||||||
|
|
||||||
|
style: str = Field(default="", description="Style prompt") # TODO: ?
|
||||||
|
original_width: int = Field(1024, description="")
|
||||||
|
original_height: int = Field(1024, description="")
|
||||||
|
crop_top: int = Field(0, description="")
|
||||||
|
crop_left: int = Field(0, description="")
|
||||||
|
aesthetic_score: float = Field(6.0, description="")
|
||||||
|
clip2: ClipField = Field(None, description="Clip to use")
|
||||||
|
|
||||||
|
# Schema customisation
|
||||||
|
class Config(InvocationConfig):
|
||||||
|
schema_extra = {
|
||||||
|
"ui": {
|
||||||
|
"title": "SDXL Refiner Prompt (Raw)",
|
||||||
|
"tags": ["prompt", "compel"],
|
||||||
|
"type_hints": {
|
||||||
|
"model": "model"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
||||||
|
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True)
|
||||||
|
|
||||||
|
original_size = (self.original_height, self.original_width)
|
||||||
|
crop_coords = (self.crop_top, self.crop_left)
|
||||||
|
|
||||||
|
add_time_ids = torch.tensor([
|
||||||
|
original_size + crop_coords + (self.aesthetic_score,)
|
||||||
|
])
|
||||||
|
|
||||||
|
conditioning_data = ConditioningFieldData(
|
||||||
|
conditionings=[
|
||||||
|
SDXLConditioningInfo(
|
||||||
|
embeds=c2,
|
||||||
|
pooled_embeds=c2_pooled,
|
||||||
|
add_time_ids=add_time_ids,
|
||||||
|
extra_conditioning=ec2, # or None
|
||||||
|
)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
||||||
|
context.services.latents.save(conditioning_name, conditioning_data)
|
||||||
|
|
||||||
|
return CompelOutput(
|
||||||
|
conditioning=ConditioningField(
|
||||||
|
conditioning_name=conditioning_name,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class ClipSkipInvocationOutput(BaseInvocationOutput):
|
class ClipSkipInvocationOutput(BaseInvocationOutput):
|
||||||
"""Clip skip node output"""
|
"""Clip skip node output"""
|
||||||
type: Literal["clip_skip_output"] = "clip_skip_output"
|
type: Literal["clip_skip_output"] = "clip_skip_output"
|
||||||
|
@ -31,6 +31,13 @@ from .controlnet_image_processors import ControlField
|
|||||||
from .image import ImageOutput
|
from .image import ImageOutput
|
||||||
from .model import ModelInfo, UNetField, VaeField
|
from .model import ModelInfo, UNetField, VaeField
|
||||||
|
|
||||||
|
from diffusers.models.attention_processor import (
|
||||||
|
AttnProcessor2_0,
|
||||||
|
LoRAAttnProcessor2_0,
|
||||||
|
LoRAXFormersAttnProcessor,
|
||||||
|
XFormersAttnProcessor,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class LatentsField(BaseModel):
|
class LatentsField(BaseModel):
|
||||||
"""A latents field used for passing latents between invocations"""
|
"""A latents field used for passing latents between invocations"""
|
||||||
@ -161,12 +168,12 @@ class TextToLatentsInvocation(BaseInvocation):
|
|||||||
context: InvocationContext,
|
context: InvocationContext,
|
||||||
scheduler,
|
scheduler,
|
||||||
) -> ConditioningData:
|
) -> ConditioningData:
|
||||||
c, extra_conditioning_info = context.services.latents.get(
|
positive_cond_data = context.services.latents.get(self.positive_conditioning.conditioning_name)
|
||||||
self.positive_conditioning.conditioning_name
|
c = positive_cond_data.conditionings[0].embeds
|
||||||
)
|
extra_conditioning_info = positive_cond_data.conditionings[0].extra_conditioning
|
||||||
uc, _ = context.services.latents.get(
|
|
||||||
self.negative_conditioning.conditioning_name
|
negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name)
|
||||||
)
|
uc = negative_cond_data.conditionings[0].embeds
|
||||||
|
|
||||||
conditioning_data = ConditioningData(
|
conditioning_data = ConditioningData(
|
||||||
unconditioned_embeddings=uc,
|
unconditioned_embeddings=uc,
|
||||||
@ -476,9 +483,9 @@ class LatentsToImageInvocation(BaseInvocation):
|
|||||||
tiled: bool = Field(
|
tiled: bool = Field(
|
||||||
default=False,
|
default=False,
|
||||||
description="Decode latents by overlaping tiles(less memory consumption)")
|
description="Decode latents by overlaping tiles(less memory consumption)")
|
||||||
|
fp32: bool = Field(False, description="Decode in full precision")
|
||||||
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
|
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
|
||||||
|
|
||||||
|
|
||||||
# Schema customisation
|
# Schema customisation
|
||||||
class Config(InvocationConfig):
|
class Config(InvocationConfig):
|
||||||
schema_extra = {
|
schema_extra = {
|
||||||
@ -496,6 +503,31 @@ class LatentsToImageInvocation(BaseInvocation):
|
|||||||
)
|
)
|
||||||
|
|
||||||
with vae_info as vae:
|
with vae_info as vae:
|
||||||
|
if self.fp32:
|
||||||
|
vae.to(dtype=torch.float32)
|
||||||
|
|
||||||
|
use_torch_2_0_or_xformers = isinstance(
|
||||||
|
vae.decoder.mid_block.attentions[0].processor,
|
||||||
|
(
|
||||||
|
AttnProcessor2_0,
|
||||||
|
XFormersAttnProcessor,
|
||||||
|
LoRAXFormersAttnProcessor,
|
||||||
|
LoRAAttnProcessor2_0,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
# if xformers or torch_2_0 is used attention block does not need
|
||||||
|
# to be in float32 which can save lots of memory
|
||||||
|
if use_torch_2_0_or_xformers:
|
||||||
|
vae.post_quant_conv.to(latents.dtype)
|
||||||
|
vae.decoder.conv_in.to(latents.dtype)
|
||||||
|
vae.decoder.mid_block.to(latents.dtype)
|
||||||
|
else:
|
||||||
|
latents = latents.float()
|
||||||
|
|
||||||
|
else:
|
||||||
|
vae.to(dtype=torch.float16)
|
||||||
|
latents = latents.half()
|
||||||
|
|
||||||
if self.tiled or context.services.configuration.tiled_decode:
|
if self.tiled or context.services.configuration.tiled_decode:
|
||||||
vae.enable_tiling()
|
vae.enable_tiling()
|
||||||
else:
|
else:
|
||||||
@ -619,6 +651,8 @@ class ImageToLatentsInvocation(BaseInvocation):
|
|||||||
tiled: bool = Field(
|
tiled: bool = Field(
|
||||||
default=False,
|
default=False,
|
||||||
description="Encode latents by overlaping tiles(less memory consumption)")
|
description="Encode latents by overlaping tiles(less memory consumption)")
|
||||||
|
fp32: bool = Field(False, description="Decode in full precision")
|
||||||
|
|
||||||
|
|
||||||
# Schema customisation
|
# Schema customisation
|
||||||
class Config(InvocationConfig):
|
class Config(InvocationConfig):
|
||||||
@ -645,6 +679,32 @@ class ImageToLatentsInvocation(BaseInvocation):
|
|||||||
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
|
||||||
|
|
||||||
with vae_info as vae:
|
with vae_info as vae:
|
||||||
|
orig_dtype = vae.dtype
|
||||||
|
if self.fp32:
|
||||||
|
vae.to(dtype=torch.float32)
|
||||||
|
|
||||||
|
use_torch_2_0_or_xformers = isinstance(
|
||||||
|
vae.decoder.mid_block.attentions[0].processor,
|
||||||
|
(
|
||||||
|
AttnProcessor2_0,
|
||||||
|
XFormersAttnProcessor,
|
||||||
|
LoRAXFormersAttnProcessor,
|
||||||
|
LoRAAttnProcessor2_0,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
# if xformers or torch_2_0 is used attention block does not need
|
||||||
|
# to be in float32 which can save lots of memory
|
||||||
|
if use_torch_2_0_or_xformers:
|
||||||
|
vae.post_quant_conv.to(orig_dtype)
|
||||||
|
vae.decoder.conv_in.to(orig_dtype)
|
||||||
|
vae.decoder.mid_block.to(orig_dtype)
|
||||||
|
#else:
|
||||||
|
# latents = latents.float()
|
||||||
|
|
||||||
|
else:
|
||||||
|
vae.to(dtype=torch.float16)
|
||||||
|
#latents = latents.half()
|
||||||
|
|
||||||
if self.tiled:
|
if self.tiled:
|
||||||
vae.enable_tiling()
|
vae.enable_tiling()
|
||||||
else:
|
else:
|
||||||
@ -659,6 +719,7 @@ class ImageToLatentsInvocation(BaseInvocation):
|
|||||||
) # FIXME: uses torch.randn. make reproducible!
|
) # FIXME: uses torch.randn. make reproducible!
|
||||||
|
|
||||||
latents = 0.18215 * latents
|
latents = 0.18215 * latents
|
||||||
|
latents = latents.to(dtype=orig_dtype)
|
||||||
|
|
||||||
name = f"{context.graph_execution_state_id}__{self.id}"
|
name = f"{context.graph_execution_state_id}__{self.id}"
|
||||||
# context.services.latents.set(name, latents)
|
# context.services.latents.set(name, latents)
|
||||||
|
@ -33,7 +33,6 @@ class ClipField(BaseModel):
|
|||||||
skipped_layers: int = Field(description="Number of skipped layers in text_encoder")
|
skipped_layers: int = Field(description="Number of skipped layers in text_encoder")
|
||||||
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
|
loras: List[LoraInfo] = Field(description="Loras to apply on model loading")
|
||||||
|
|
||||||
|
|
||||||
class VaeField(BaseModel):
|
class VaeField(BaseModel):
|
||||||
# TODO: better naming?
|
# TODO: better naming?
|
||||||
vae: ModelInfo = Field(description="Info to load vae submodel")
|
vae: ModelInfo = Field(description="Info to load vae submodel")
|
||||||
@ -50,7 +49,6 @@ class ModelLoaderOutput(BaseInvocationOutput):
|
|||||||
vae: VaeField = Field(default=None, description="Vae submodel")
|
vae: VaeField = Field(default=None, description="Vae submodel")
|
||||||
# fmt: on
|
# fmt: on
|
||||||
|
|
||||||
|
|
||||||
class MainModelField(BaseModel):
|
class MainModelField(BaseModel):
|
||||||
"""Main model field"""
|
"""Main model field"""
|
||||||
|
|
||||||
@ -64,7 +62,6 @@ class LoRAModelField(BaseModel):
|
|||||||
model_name: str = Field(description="Name of the LoRA model")
|
model_name: str = Field(description="Name of the LoRA model")
|
||||||
base_model: BaseModelType = Field(description="Base model")
|
base_model: BaseModelType = Field(description="Base model")
|
||||||
|
|
||||||
|
|
||||||
class MainModelLoaderInvocation(BaseInvocation):
|
class MainModelLoaderInvocation(BaseInvocation):
|
||||||
"""Loads a main model, outputting its submodels."""
|
"""Loads a main model, outputting its submodels."""
|
||||||
|
|
||||||
@ -157,6 +154,22 @@ class MainModelLoaderInvocation(BaseInvocation):
|
|||||||
loras=[],
|
loras=[],
|
||||||
skipped_layers=0,
|
skipped_layers=0,
|
||||||
),
|
),
|
||||||
|
clip2=ClipField(
|
||||||
|
tokenizer=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.Tokenizer2,
|
||||||
|
),
|
||||||
|
text_encoder=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.TextEncoder2,
|
||||||
|
),
|
||||||
|
loras=[],
|
||||||
|
skipped_layers=0,
|
||||||
|
),
|
||||||
vae=VaeField(
|
vae=VaeField(
|
||||||
vae=ModelInfo(
|
vae=ModelInfo(
|
||||||
model_name=model_name,
|
model_name=model_name,
|
||||||
|
658
invokeai/app/invocations/sdxl.py
Normal file
658
invokeai/app/invocations/sdxl.py
Normal file
@ -0,0 +1,658 @@
|
|||||||
|
import torch
|
||||||
|
import inspect
|
||||||
|
from tqdm import tqdm
|
||||||
|
from typing import List, Literal, Optional, Union
|
||||||
|
|
||||||
|
from pydantic import Field, validator
|
||||||
|
|
||||||
|
from ...backend.model_management import ModelType, SubModelType
|
||||||
|
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
||||||
|
InvocationConfig, InvocationContext)
|
||||||
|
|
||||||
|
from .model import UNetField, ClipField, VaeField, MainModelField, ModelInfo
|
||||||
|
from .compel import ConditioningField
|
||||||
|
from .latent import LatentsField, SAMPLER_NAME_VALUES, LatentsOutput, get_scheduler, build_latents_output
|
||||||
|
|
||||||
|
class SDXLModelLoaderOutput(BaseInvocationOutput):
|
||||||
|
"""SDXL base model loader output"""
|
||||||
|
|
||||||
|
# fmt: off
|
||||||
|
type: Literal["sdxl_model_loader_output"] = "sdxl_model_loader_output"
|
||||||
|
|
||||||
|
unet: UNetField = Field(default=None, description="UNet submodel")
|
||||||
|
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
|
||||||
|
clip2: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
|
||||||
|
vae: VaeField = Field(default=None, description="Vae submodel")
|
||||||
|
# fmt: on
|
||||||
|
|
||||||
|
class SDXLRefinerModelLoaderOutput(BaseInvocationOutput):
|
||||||
|
"""SDXL refiner model loader output"""
|
||||||
|
# fmt: off
|
||||||
|
type: Literal["sdxl_refiner_model_loader_output"] = "sdxl_refiner_model_loader_output"
|
||||||
|
unet: UNetField = Field(default=None, description="UNet submodel")
|
||||||
|
clip2: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
|
||||||
|
vae: VaeField = Field(default=None, description="Vae submodel")
|
||||||
|
# fmt: on
|
||||||
|
#fmt: on
|
||||||
|
|
||||||
|
class SDXLModelLoaderInvocation(BaseInvocation):
|
||||||
|
"""Loads an sdxl base model, outputting its submodels."""
|
||||||
|
|
||||||
|
type: Literal["sdxl_model_loader"] = "sdxl_model_loader"
|
||||||
|
|
||||||
|
model: MainModelField = Field(description="The model to load")
|
||||||
|
# TODO: precision?
|
||||||
|
|
||||||
|
# Schema customisation
|
||||||
|
class Config(InvocationConfig):
|
||||||
|
schema_extra = {
|
||||||
|
"ui": {
|
||||||
|
"title": "SDXL Model Loader",
|
||||||
|
"tags": ["model", "loader", "sdxl"],
|
||||||
|
"type_hints": {"model": "model"},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> SDXLModelLoaderOutput:
|
||||||
|
base_model = self.model.base_model
|
||||||
|
model_name = self.model.model_name
|
||||||
|
model_type = ModelType.Main
|
||||||
|
|
||||||
|
# TODO: not found exceptions
|
||||||
|
if not context.services.model_manager.model_exists(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
):
|
||||||
|
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
|
||||||
|
|
||||||
|
return SDXLModelLoaderOutput(
|
||||||
|
unet=UNetField(
|
||||||
|
unet=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.UNet,
|
||||||
|
),
|
||||||
|
scheduler=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.Scheduler,
|
||||||
|
),
|
||||||
|
loras=[],
|
||||||
|
),
|
||||||
|
clip=ClipField(
|
||||||
|
tokenizer=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.Tokenizer,
|
||||||
|
),
|
||||||
|
text_encoder=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.TextEncoder,
|
||||||
|
),
|
||||||
|
loras=[],
|
||||||
|
skipped_layers=0,
|
||||||
|
),
|
||||||
|
clip2=ClipField(
|
||||||
|
tokenizer=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.Tokenizer2,
|
||||||
|
),
|
||||||
|
text_encoder=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.TextEncoder2,
|
||||||
|
),
|
||||||
|
loras=[],
|
||||||
|
skipped_layers=0,
|
||||||
|
),
|
||||||
|
vae=VaeField(
|
||||||
|
vae=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.Vae,
|
||||||
|
),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
class SDXLRefinerModelLoaderInvocation(BaseInvocation):
|
||||||
|
"""Loads an sdxl refiner model, outputting its submodels."""
|
||||||
|
type: Literal["sdxl_refiner_model_loader"] = "sdxl_refiner_model_loader"
|
||||||
|
|
||||||
|
model: MainModelField = Field(description="The model to load")
|
||||||
|
# TODO: precision?
|
||||||
|
|
||||||
|
# Schema customisation
|
||||||
|
class Config(InvocationConfig):
|
||||||
|
schema_extra = {
|
||||||
|
"ui": {
|
||||||
|
"title": "SDXL Refiner Model Loader",
|
||||||
|
"tags": ["model", "loader", "sdxl_refiner"],
|
||||||
|
"type_hints": {"model": "model"},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> SDXLRefinerModelLoaderOutput:
|
||||||
|
base_model = self.model.base_model
|
||||||
|
model_name = self.model.model_name
|
||||||
|
model_type = ModelType.Main
|
||||||
|
|
||||||
|
# TODO: not found exceptions
|
||||||
|
if not context.services.model_manager.model_exists(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
):
|
||||||
|
raise Exception(f"Unknown {base_model} {model_type} model: {model_name}")
|
||||||
|
|
||||||
|
return SDXLRefinerModelLoaderOutput(
|
||||||
|
unet=UNetField(
|
||||||
|
unet=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.UNet,
|
||||||
|
),
|
||||||
|
scheduler=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.Scheduler,
|
||||||
|
),
|
||||||
|
loras=[],
|
||||||
|
),
|
||||||
|
clip2=ClipField(
|
||||||
|
tokenizer=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.Tokenizer2,
|
||||||
|
),
|
||||||
|
text_encoder=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.TextEncoder2,
|
||||||
|
),
|
||||||
|
loras=[],
|
||||||
|
skipped_layers=0,
|
||||||
|
),
|
||||||
|
vae=VaeField(
|
||||||
|
vae=ModelInfo(
|
||||||
|
model_name=model_name,
|
||||||
|
base_model=base_model,
|
||||||
|
model_type=model_type,
|
||||||
|
submodel=SubModelType.Vae,
|
||||||
|
),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Text to image
|
||||||
|
class SDXLTextToLatentsInvocation(BaseInvocation):
|
||||||
|
"""Generates latents from conditionings."""
|
||||||
|
|
||||||
|
type: Literal["t2l_sdxl"] = "t2l_sdxl"
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
# fmt: off
|
||||||
|
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
|
||||||
|
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
|
||||||
|
noise: Optional[LatentsField] = Field(description="The noise to use")
|
||||||
|
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
||||||
|
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||||
|
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
|
||||||
|
unet: UNetField = Field(default=None, description="UNet submodel")
|
||||||
|
denoising_end: float = Field(default=1.0, gt=0, le=1, description="")
|
||||||
|
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
|
||||||
|
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||||
|
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
||||||
|
# fmt: on
|
||||||
|
|
||||||
|
@validator("cfg_scale")
|
||||||
|
def ge_one(cls, v):
|
||||||
|
"""validate that all cfg_scale values are >= 1"""
|
||||||
|
if isinstance(v, list):
|
||||||
|
for i in v:
|
||||||
|
if i < 1:
|
||||||
|
raise ValueError('cfg_scale must be greater than 1')
|
||||||
|
else:
|
||||||
|
if v < 1:
|
||||||
|
raise ValueError('cfg_scale must be greater than 1')
|
||||||
|
return v
|
||||||
|
|
||||||
|
# Schema customisation
|
||||||
|
class Config(InvocationConfig):
|
||||||
|
schema_extra = {
|
||||||
|
"ui": {
|
||||||
|
"tags": ["latents"],
|
||||||
|
"type_hints": {
|
||||||
|
"model": "model",
|
||||||
|
# "cfg_scale": "float",
|
||||||
|
"cfg_scale": "number"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
# based on
|
||||||
|
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
|
||||||
|
@torch.no_grad()
|
||||||
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||||
|
latents = context.services.latents.get(self.noise.latents_name)
|
||||||
|
|
||||||
|
positive_cond_data = context.services.latents.get(self.positive_conditioning.conditioning_name)
|
||||||
|
prompt_embeds = positive_cond_data.conditionings[0].embeds
|
||||||
|
pooled_prompt_embeds = positive_cond_data.conditionings[0].pooled_embeds
|
||||||
|
add_time_ids = positive_cond_data.conditionings[0].add_time_ids
|
||||||
|
|
||||||
|
negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name)
|
||||||
|
negative_prompt_embeds = negative_cond_data.conditionings[0].embeds
|
||||||
|
negative_pooled_prompt_embeds = negative_cond_data.conditionings[0].pooled_embeds
|
||||||
|
add_neg_time_ids = negative_cond_data.conditionings[0].add_time_ids
|
||||||
|
|
||||||
|
scheduler = get_scheduler(
|
||||||
|
context=context,
|
||||||
|
scheduler_info=self.unet.scheduler,
|
||||||
|
scheduler_name=self.scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
num_inference_steps = self.steps
|
||||||
|
scheduler.set_timesteps(num_inference_steps)
|
||||||
|
timesteps = scheduler.timesteps
|
||||||
|
|
||||||
|
latents = latents * scheduler.init_noise_sigma
|
||||||
|
|
||||||
|
|
||||||
|
unet_info = context.services.model_manager.get_model(
|
||||||
|
**self.unet.unet.dict()
|
||||||
|
)
|
||||||
|
do_classifier_free_guidance = True
|
||||||
|
cross_attention_kwargs = None
|
||||||
|
with unet_info as unet:
|
||||||
|
|
||||||
|
extra_step_kwargs = dict()
|
||||||
|
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
|
||||||
|
extra_step_kwargs.update(
|
||||||
|
eta=0.0,
|
||||||
|
)
|
||||||
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
|
||||||
|
extra_step_kwargs.update(
|
||||||
|
generator=torch.Generator(device=unet.device).manual_seed(0),
|
||||||
|
)
|
||||||
|
|
||||||
|
num_warmup_steps = len(timesteps) - self.steps * scheduler.order
|
||||||
|
|
||||||
|
# apply denoising_end
|
||||||
|
skipped_final_steps = int(round((1 - self.denoising_end) * self.steps))
|
||||||
|
num_inference_steps = num_inference_steps - skipped_final_steps
|
||||||
|
timesteps = timesteps[: num_warmup_steps + scheduler.order * num_inference_steps]
|
||||||
|
|
||||||
|
if not context.services.configuration.sequential_guidance:
|
||||||
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||||
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
||||||
|
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
||||||
|
|
||||||
|
prompt_embeds = prompt_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
add_text_embeds = add_text_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
add_time_ids = add_time_ids.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
|
||||||
|
with tqdm(total=self.steps) as progress_bar:
|
||||||
|
for i, t in enumerate(timesteps):
|
||||||
|
# expand the latents if we are doing classifier free guidance
|
||||||
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||||
|
|
||||||
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
||||||
|
|
||||||
|
# predict the noise residual
|
||||||
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
||||||
|
noise_pred = unet(
|
||||||
|
latent_model_input,
|
||||||
|
t,
|
||||||
|
encoder_hidden_states=prompt_embeds,
|
||||||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||||||
|
added_cond_kwargs=added_cond_kwargs,
|
||||||
|
return_dict=False,
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
# perform guidance
|
||||||
|
if do_classifier_free_guidance:
|
||||||
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||||
|
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
|
||||||
|
#del noise_pred_uncond
|
||||||
|
#del noise_pred_text
|
||||||
|
|
||||||
|
#if do_classifier_free_guidance and guidance_rescale > 0.0:
|
||||||
|
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
||||||
|
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
||||||
|
|
||||||
|
# compute the previous noisy sample x_t -> x_t-1
|
||||||
|
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||||
|
|
||||||
|
# call the callback, if provided
|
||||||
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
|
||||||
|
progress_bar.update()
|
||||||
|
#if callback is not None and i % callback_steps == 0:
|
||||||
|
# callback(i, t, latents)
|
||||||
|
else:
|
||||||
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
negative_prompt_embeds = negative_prompt_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
add_neg_time_ids = add_neg_time_ids.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
pooled_prompt_embeds = pooled_prompt_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
prompt_embeds = prompt_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
add_time_ids = add_time_ids.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
|
||||||
|
with tqdm(total=self.steps) as progress_bar:
|
||||||
|
for i, t in enumerate(timesteps):
|
||||||
|
# expand the latents if we are doing classifier free guidance
|
||||||
|
#latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||||
|
|
||||||
|
latent_model_input = scheduler.scale_model_input(latents, t)
|
||||||
|
|
||||||
|
#import gc
|
||||||
|
#gc.collect()
|
||||||
|
#torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
# predict the noise residual
|
||||||
|
|
||||||
|
added_cond_kwargs = {"text_embeds": negative_pooled_prompt_embeds, "time_ids": add_neg_time_ids}
|
||||||
|
noise_pred_uncond = unet(
|
||||||
|
latent_model_input,
|
||||||
|
t,
|
||||||
|
encoder_hidden_states=negative_prompt_embeds,
|
||||||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||||||
|
added_cond_kwargs=added_cond_kwargs,
|
||||||
|
return_dict=False,
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
added_cond_kwargs = {"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids}
|
||||||
|
noise_pred_text = unet(
|
||||||
|
latent_model_input,
|
||||||
|
t,
|
||||||
|
encoder_hidden_states=prompt_embeds,
|
||||||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||||||
|
added_cond_kwargs=added_cond_kwargs,
|
||||||
|
return_dict=False,
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
# perform guidance
|
||||||
|
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
|
||||||
|
|
||||||
|
#del noise_pred_text
|
||||||
|
#del noise_pred_uncond
|
||||||
|
#import gc
|
||||||
|
#gc.collect()
|
||||||
|
#torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
#if do_classifier_free_guidance and guidance_rescale > 0.0:
|
||||||
|
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
||||||
|
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
||||||
|
|
||||||
|
# compute the previous noisy sample x_t -> x_t-1
|
||||||
|
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||||
|
|
||||||
|
#del noise_pred
|
||||||
|
#import gc
|
||||||
|
#gc.collect()
|
||||||
|
#torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
# call the callback, if provided
|
||||||
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
|
||||||
|
progress_bar.update()
|
||||||
|
#if callback is not None and i % callback_steps == 0:
|
||||||
|
# callback(i, t, latents)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#################
|
||||||
|
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||||
|
context.services.latents.save(name, latents)
|
||||||
|
return build_latents_output(latents_name=name, latents=latents)
|
||||||
|
|
||||||
|
class SDXLLatentsToLatentsInvocation(BaseInvocation):
|
||||||
|
"""Generates latents from conditionings."""
|
||||||
|
|
||||||
|
type: Literal["l2l_sdxl"] = "l2l_sdxl"
|
||||||
|
|
||||||
|
# Inputs
|
||||||
|
# fmt: off
|
||||||
|
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
|
||||||
|
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
|
||||||
|
noise: Optional[LatentsField] = Field(description="The noise to use")
|
||||||
|
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
||||||
|
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||||
|
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
|
||||||
|
unet: UNetField = Field(default=None, description="UNet submodel")
|
||||||
|
latents: Optional[LatentsField] = Field(description="Initial latents")
|
||||||
|
|
||||||
|
denoising_start: float = Field(default=0.0, ge=0, lt=1, description="")
|
||||||
|
denoising_end: float = Field(default=1.0, gt=0, le=1, description="")
|
||||||
|
|
||||||
|
#control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
|
||||||
|
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
||||||
|
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
|
||||||
|
# fmt: on
|
||||||
|
|
||||||
|
@validator("cfg_scale")
|
||||||
|
def ge_one(cls, v):
|
||||||
|
"""validate that all cfg_scale values are >= 1"""
|
||||||
|
if isinstance(v, list):
|
||||||
|
for i in v:
|
||||||
|
if i < 1:
|
||||||
|
raise ValueError('cfg_scale must be greater than 1')
|
||||||
|
else:
|
||||||
|
if v < 1:
|
||||||
|
raise ValueError('cfg_scale must be greater than 1')
|
||||||
|
return v
|
||||||
|
|
||||||
|
# Schema customisation
|
||||||
|
class Config(InvocationConfig):
|
||||||
|
schema_extra = {
|
||||||
|
"ui": {
|
||||||
|
"tags": ["latents"],
|
||||||
|
"type_hints": {
|
||||||
|
"model": "model",
|
||||||
|
# "cfg_scale": "float",
|
||||||
|
"cfg_scale": "number"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
# based on
|
||||||
|
# https://github.com/huggingface/diffusers/blob/3ebbaf7c96801271f9e6c21400033b6aa5ffcf29/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L375
|
||||||
|
@torch.no_grad()
|
||||||
|
def invoke(self, context: InvocationContext) -> LatentsOutput:
|
||||||
|
latents = context.services.latents.get(self.latents.latents_name)
|
||||||
|
|
||||||
|
positive_cond_data = context.services.latents.get(self.positive_conditioning.conditioning_name)
|
||||||
|
prompt_embeds = positive_cond_data.conditionings[0].embeds
|
||||||
|
pooled_prompt_embeds = positive_cond_data.conditionings[0].pooled_embeds
|
||||||
|
add_time_ids = positive_cond_data.conditionings[0].add_time_ids
|
||||||
|
|
||||||
|
negative_cond_data = context.services.latents.get(self.negative_conditioning.conditioning_name)
|
||||||
|
negative_prompt_embeds = negative_cond_data.conditionings[0].embeds
|
||||||
|
negative_pooled_prompt_embeds = negative_cond_data.conditionings[0].pooled_embeds
|
||||||
|
add_neg_time_ids = negative_cond_data.conditionings[0].add_time_ids
|
||||||
|
|
||||||
|
scheduler = get_scheduler(
|
||||||
|
context=context,
|
||||||
|
scheduler_info=self.unet.scheduler,
|
||||||
|
scheduler_name=self.scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
# apply denoising_start
|
||||||
|
num_inference_steps = self.steps
|
||||||
|
scheduler.set_timesteps(num_inference_steps)
|
||||||
|
|
||||||
|
t_start = int(round(self.denoising_start * num_inference_steps))
|
||||||
|
timesteps = scheduler.timesteps[t_start * scheduler.order:]
|
||||||
|
num_inference_steps = num_inference_steps - t_start
|
||||||
|
|
||||||
|
# apply noise(if provided)
|
||||||
|
if self.noise is not None:
|
||||||
|
noise = context.services.latents.get(self.noise.latents_name)
|
||||||
|
latents = scheduler.add_noise(latents, noise, timesteps[:1])
|
||||||
|
del noise
|
||||||
|
|
||||||
|
unet_info = context.services.model_manager.get_model(
|
||||||
|
**self.unet.unet.dict()
|
||||||
|
)
|
||||||
|
do_classifier_free_guidance = True
|
||||||
|
cross_attention_kwargs = None
|
||||||
|
with unet_info as unet:
|
||||||
|
|
||||||
|
# apply scheduler extra args
|
||||||
|
extra_step_kwargs = dict()
|
||||||
|
if "eta" in set(inspect.signature(scheduler.step).parameters.keys()):
|
||||||
|
extra_step_kwargs.update(
|
||||||
|
eta=0.0,
|
||||||
|
)
|
||||||
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()):
|
||||||
|
extra_step_kwargs.update(
|
||||||
|
generator=torch.Generator(device=unet.device).manual_seed(0),
|
||||||
|
)
|
||||||
|
|
||||||
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * scheduler.order, 0)
|
||||||
|
|
||||||
|
# apply denoising_end
|
||||||
|
skipped_final_steps = int(round((1 - self.denoising_end) * self.steps))
|
||||||
|
num_inference_steps = num_inference_steps - skipped_final_steps
|
||||||
|
timesteps = timesteps[: num_warmup_steps + scheduler.order * num_inference_steps]
|
||||||
|
|
||||||
|
if not context.services.configuration.sequential_guidance:
|
||||||
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||||
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
||||||
|
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
|
||||||
|
|
||||||
|
prompt_embeds = prompt_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
add_text_embeds = add_text_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
add_time_ids = add_time_ids.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
|
||||||
|
with tqdm(total=num_inference_steps) as progress_bar:
|
||||||
|
for i, t in enumerate(timesteps):
|
||||||
|
# expand the latents if we are doing classifier free guidance
|
||||||
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||||
|
|
||||||
|
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
||||||
|
|
||||||
|
# predict the noise residual
|
||||||
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
||||||
|
noise_pred = unet(
|
||||||
|
latent_model_input,
|
||||||
|
t,
|
||||||
|
encoder_hidden_states=prompt_embeds,
|
||||||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||||||
|
added_cond_kwargs=added_cond_kwargs,
|
||||||
|
return_dict=False,
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
# perform guidance
|
||||||
|
if do_classifier_free_guidance:
|
||||||
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||||
|
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
|
||||||
|
#del noise_pred_uncond
|
||||||
|
#del noise_pred_text
|
||||||
|
|
||||||
|
#if do_classifier_free_guidance and guidance_rescale > 0.0:
|
||||||
|
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
||||||
|
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
||||||
|
|
||||||
|
# compute the previous noisy sample x_t -> x_t-1
|
||||||
|
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||||
|
|
||||||
|
# call the callback, if provided
|
||||||
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
|
||||||
|
progress_bar.update()
|
||||||
|
#if callback is not None and i % callback_steps == 0:
|
||||||
|
# callback(i, t, latents)
|
||||||
|
else:
|
||||||
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
negative_prompt_embeds = negative_prompt_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
add_neg_time_ids = add_neg_time_ids.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
pooled_prompt_embeds = pooled_prompt_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
prompt_embeds = prompt_embeds.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
add_time_ids = add_time_ids.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
latents = latents.to(device=unet.device, dtype=unet.dtype)
|
||||||
|
|
||||||
|
with tqdm(total=num_inference_steps) as progress_bar:
|
||||||
|
for i, t in enumerate(timesteps):
|
||||||
|
# expand the latents if we are doing classifier free guidance
|
||||||
|
#latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||||
|
|
||||||
|
latent_model_input = scheduler.scale_model_input(latents, t)
|
||||||
|
|
||||||
|
#import gc
|
||||||
|
#gc.collect()
|
||||||
|
#torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
# predict the noise residual
|
||||||
|
|
||||||
|
added_cond_kwargs = {"text_embeds": negative_pooled_prompt_embeds, "time_ids": add_time_ids}
|
||||||
|
noise_pred_uncond = unet(
|
||||||
|
latent_model_input,
|
||||||
|
t,
|
||||||
|
encoder_hidden_states=negative_prompt_embeds,
|
||||||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||||||
|
added_cond_kwargs=added_cond_kwargs,
|
||||||
|
return_dict=False,
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
added_cond_kwargs = {"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids}
|
||||||
|
noise_pred_text = unet(
|
||||||
|
latent_model_input,
|
||||||
|
t,
|
||||||
|
encoder_hidden_states=prompt_embeds,
|
||||||
|
cross_attention_kwargs=cross_attention_kwargs,
|
||||||
|
added_cond_kwargs=added_cond_kwargs,
|
||||||
|
return_dict=False,
|
||||||
|
)[0]
|
||||||
|
|
||||||
|
# perform guidance
|
||||||
|
noise_pred = noise_pred_uncond + self.cfg_scale * (noise_pred_text - noise_pred_uncond)
|
||||||
|
|
||||||
|
#del noise_pred_text
|
||||||
|
#del noise_pred_uncond
|
||||||
|
#import gc
|
||||||
|
#gc.collect()
|
||||||
|
#torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
#if do_classifier_free_guidance and guidance_rescale > 0.0:
|
||||||
|
# # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
||||||
|
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
||||||
|
|
||||||
|
# compute the previous noisy sample x_t -> x_t-1
|
||||||
|
latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||||
|
|
||||||
|
#del noise_pred
|
||||||
|
#import gc
|
||||||
|
#gc.collect()
|
||||||
|
#torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
# call the callback, if provided
|
||||||
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0):
|
||||||
|
progress_bar.update()
|
||||||
|
#if callback is not None and i % callback_steps == 0:
|
||||||
|
# callback(i, t, latents)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#################
|
||||||
|
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
name = f'{context.graph_execution_state_id}__{self.id}'
|
||||||
|
context.services.latents.save(name, latents)
|
||||||
|
return build_latents_output(latents_name=name, latents=latents)
|
@ -212,7 +212,7 @@ class ModelInstall(object):
|
|||||||
{'config.json','model_index.json','learned_embeds.bin','pytorch_lora_weights.bin'}
|
{'config.json','model_index.json','learned_embeds.bin','pytorch_lora_weights.bin'}
|
||||||
]
|
]
|
||||||
):
|
):
|
||||||
models_installed.update(self._install_path(path))
|
models_installed.update({str(model_path_id_or_url): self._install_path(path)})
|
||||||
|
|
||||||
# recursive scan
|
# recursive scan
|
||||||
elif path.is_dir():
|
elif path.is_dir():
|
||||||
|
@ -12,6 +12,7 @@ from picklescan.scanner import scan_file_path
|
|||||||
from .models import (
|
from .models import (
|
||||||
BaseModelType, ModelType, ModelVariantType,
|
BaseModelType, ModelType, ModelVariantType,
|
||||||
SchedulerPredictionType, SilenceWarnings,
|
SchedulerPredictionType, SilenceWarnings,
|
||||||
|
InvalidModelException
|
||||||
)
|
)
|
||||||
from .models.base import read_checkpoint_meta
|
from .models.base import read_checkpoint_meta
|
||||||
|
|
||||||
@ -38,6 +39,8 @@ class ModelProbe(object):
|
|||||||
|
|
||||||
CLASS2TYPE = {
|
CLASS2TYPE = {
|
||||||
'StableDiffusionPipeline' : ModelType.Main,
|
'StableDiffusionPipeline' : ModelType.Main,
|
||||||
|
'StableDiffusionXLPipeline' : ModelType.Main,
|
||||||
|
'StableDiffusionXLImg2ImgPipeline' : ModelType.Main,
|
||||||
'AutoencoderKL' : ModelType.Vae,
|
'AutoencoderKL' : ModelType.Vae,
|
||||||
'ControlNetModel' : ModelType.ControlNet,
|
'ControlNetModel' : ModelType.ControlNet,
|
||||||
}
|
}
|
||||||
@ -59,7 +62,7 @@ class ModelProbe(object):
|
|||||||
elif isinstance(model,(dict,ModelMixin,ConfigMixin)):
|
elif isinstance(model,(dict,ModelMixin,ConfigMixin)):
|
||||||
return cls.probe(model_path=None, model=model, prediction_type_helper=prediction_type_helper)
|
return cls.probe(model_path=None, model=model, prediction_type_helper=prediction_type_helper)
|
||||||
else:
|
else:
|
||||||
raise ValueError("model parameter {model} is neither a Path, nor a model")
|
raise InvalidModelException("model parameter {model} is neither a Path, nor a model")
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def probe(cls,
|
def probe(cls,
|
||||||
@ -99,9 +102,10 @@ class ModelProbe(object):
|
|||||||
upcast_attention = (base_type==BaseModelType.StableDiffusion2 \
|
upcast_attention = (base_type==BaseModelType.StableDiffusion2 \
|
||||||
and prediction_type==SchedulerPredictionType.VPrediction),
|
and prediction_type==SchedulerPredictionType.VPrediction),
|
||||||
format = format,
|
format = format,
|
||||||
image_size = 768 if (base_type==BaseModelType.StableDiffusion2 \
|
image_size = 1024 if (base_type in {BaseModelType.StableDiffusionXL,BaseModelType.StableDiffusionXLRefiner}) else \
|
||||||
and prediction_type==SchedulerPredictionType.VPrediction \
|
768 if (base_type==BaseModelType.StableDiffusion2 \
|
||||||
) else 512,
|
and prediction_type==SchedulerPredictionType.VPrediction ) else \
|
||||||
|
512
|
||||||
)
|
)
|
||||||
except Exception:
|
except Exception:
|
||||||
raise
|
raise
|
||||||
@ -138,7 +142,7 @@ class ModelProbe(object):
|
|||||||
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
|
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
|
||||||
return ModelType.TextualInversion
|
return ModelType.TextualInversion
|
||||||
|
|
||||||
raise ValueError(f"Unable to determine model type for {model_path}")
|
raise InvalidModelException(f"Unable to determine model type for {model_path}")
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_model_type_from_folder(cls, folder_path: Path, model: ModelMixin)->ModelType:
|
def get_model_type_from_folder(cls, folder_path: Path, model: ModelMixin)->ModelType:
|
||||||
@ -168,7 +172,7 @@ class ModelProbe(object):
|
|||||||
return type
|
return type
|
||||||
|
|
||||||
# give up
|
# give up
|
||||||
raise ValueError(f"Unable to determine model type for {folder_path}")
|
raise InvalidModelException(f"Unable to determine model type for {folder_path}")
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def _scan_and_load_checkpoint(cls,model_path: Path)->dict:
|
def _scan_and_load_checkpoint(cls,model_path: Path)->dict:
|
||||||
@ -237,7 +241,7 @@ class CheckpointProbeBase(ProbeBase):
|
|||||||
elif in_channels == 4:
|
elif in_channels == 4:
|
||||||
return ModelVariantType.Normal
|
return ModelVariantType.Normal
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Cannot determine variant type (in_channels={in_channels}) at {self.checkpoint_path}")
|
raise InvalidModelException(f"Cannot determine variant type (in_channels={in_channels}) at {self.checkpoint_path}")
|
||||||
|
|
||||||
class PipelineCheckpointProbe(CheckpointProbeBase):
|
class PipelineCheckpointProbe(CheckpointProbeBase):
|
||||||
def get_base_type(self)->BaseModelType:
|
def get_base_type(self)->BaseModelType:
|
||||||
@ -248,7 +252,10 @@ class PipelineCheckpointProbe(CheckpointProbeBase):
|
|||||||
return BaseModelType.StableDiffusion1
|
return BaseModelType.StableDiffusion1
|
||||||
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
|
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
|
||||||
return BaseModelType.StableDiffusion2
|
return BaseModelType.StableDiffusion2
|
||||||
raise ValueError("Cannot determine base type")
|
# TODO: Verify that this is correct! Need an XL checkpoint file for this.
|
||||||
|
if key_name in state_dict and state_dict[key_name].shape[-1] == 2048:
|
||||||
|
return BaseModelType.StableDiffusionXL
|
||||||
|
raise InvalidModelException("Cannot determine base type")
|
||||||
|
|
||||||
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
|
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
|
||||||
type = self.get_base_type()
|
type = self.get_base_type()
|
||||||
@ -329,7 +336,7 @@ class ControlNetCheckpointProbe(CheckpointProbeBase):
|
|||||||
return BaseModelType.StableDiffusion2
|
return BaseModelType.StableDiffusion2
|
||||||
elif self.checkpoint_path and self.helper:
|
elif self.checkpoint_path and self.helper:
|
||||||
return self.helper(self.checkpoint_path)
|
return self.helper(self.checkpoint_path)
|
||||||
raise ValueError("Unable to determine base type for {self.checkpoint_path}")
|
raise InvalidModelException("Unable to determine base type for {self.checkpoint_path}")
|
||||||
|
|
||||||
########################################################
|
########################################################
|
||||||
# classes for probing folders
|
# classes for probing folders
|
||||||
@ -360,8 +367,12 @@ class PipelineFolderProbe(FolderProbeBase):
|
|||||||
return BaseModelType.StableDiffusion1
|
return BaseModelType.StableDiffusion1
|
||||||
elif unet_conf['cross_attention_dim'] == 1024:
|
elif unet_conf['cross_attention_dim'] == 1024:
|
||||||
return BaseModelType.StableDiffusion2
|
return BaseModelType.StableDiffusion2
|
||||||
|
elif unet_conf['cross_attention_dim'] == 1280:
|
||||||
|
return BaseModelType.StableDiffusionXLRefiner
|
||||||
|
elif unet_conf['cross_attention_dim'] == 2048:
|
||||||
|
return BaseModelType.StableDiffusionXL
|
||||||
else:
|
else:
|
||||||
raise ValueError(f'Unknown base model for {self.folder_path}')
|
raise InvalidModelException(f'Unknown base model for {self.folder_path}')
|
||||||
|
|
||||||
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
|
def get_scheduler_prediction_type(self)->SchedulerPredictionType:
|
||||||
if self.model:
|
if self.model:
|
||||||
@ -418,7 +429,7 @@ class ControlNetFolderProbe(FolderProbeBase):
|
|||||||
def get_base_type(self)->BaseModelType:
|
def get_base_type(self)->BaseModelType:
|
||||||
config_file = self.folder_path / 'config.json'
|
config_file = self.folder_path / 'config.json'
|
||||||
if not config_file.exists():
|
if not config_file.exists():
|
||||||
raise ValueError(f"Cannot determine base type for {self.folder_path}")
|
raise InvalidModelException(f"Cannot determine base type for {self.folder_path}")
|
||||||
with open(config_file,'r') as file:
|
with open(config_file,'r') as file:
|
||||||
config = json.load(file)
|
config = json.load(file)
|
||||||
# no obvious way to distinguish between sd2-base and sd2-768
|
# no obvious way to distinguish between sd2-base and sd2-768
|
||||||
@ -435,7 +446,7 @@ class LoRAFolderProbe(FolderProbeBase):
|
|||||||
model_file = base_file
|
model_file = base_file
|
||||||
break
|
break
|
||||||
if not model_file:
|
if not model_file:
|
||||||
raise ValueError('Unknown LoRA format encountered')
|
raise InvalidModelException('Unknown LoRA format encountered')
|
||||||
return LoRACheckpointProbe(model_file,None).get_base_type()
|
return LoRACheckpointProbe(model_file,None).get_base_type()
|
||||||
|
|
||||||
############## register probe classes ######
|
############## register probe classes ######
|
||||||
|
@ -4,6 +4,7 @@ from pydantic import BaseModel
|
|||||||
from typing import Literal, get_origin
|
from typing import Literal, get_origin
|
||||||
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException, InvalidModelException
|
from .base import BaseModelType, ModelType, SubModelType, ModelBase, ModelConfigBase, ModelVariantType, SchedulerPredictionType, ModelError, SilenceWarnings, ModelNotFoundException, InvalidModelException
|
||||||
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
|
from .stable_diffusion import StableDiffusion1Model, StableDiffusion2Model
|
||||||
|
from .sdxl import StableDiffusionXLModel
|
||||||
from .vae import VaeModel
|
from .vae import VaeModel
|
||||||
from .lora import LoRAModel
|
from .lora import LoRAModel
|
||||||
from .controlnet import ControlNetModel # TODO:
|
from .controlnet import ControlNetModel # TODO:
|
||||||
@ -24,6 +25,22 @@ MODEL_CLASSES = {
|
|||||||
ModelType.ControlNet: ControlNetModel,
|
ModelType.ControlNet: ControlNetModel,
|
||||||
ModelType.TextualInversion: TextualInversionModel,
|
ModelType.TextualInversion: TextualInversionModel,
|
||||||
},
|
},
|
||||||
|
BaseModelType.StableDiffusionXL: {
|
||||||
|
ModelType.Main: StableDiffusionXLModel,
|
||||||
|
ModelType.Vae: VaeModel,
|
||||||
|
# will not work until support written
|
||||||
|
ModelType.Lora: LoRAModel,
|
||||||
|
ModelType.ControlNet: ControlNetModel,
|
||||||
|
ModelType.TextualInversion: TextualInversionModel,
|
||||||
|
},
|
||||||
|
BaseModelType.StableDiffusionXLRefiner: {
|
||||||
|
ModelType.Main: StableDiffusionXLModel,
|
||||||
|
ModelType.Vae: VaeModel,
|
||||||
|
# will not work until support written
|
||||||
|
ModelType.Lora: LoRAModel,
|
||||||
|
ModelType.ControlNet: ControlNetModel,
|
||||||
|
ModelType.TextualInversion: TextualInversionModel,
|
||||||
|
},
|
||||||
#BaseModelType.Kandinsky2_1: {
|
#BaseModelType.Kandinsky2_1: {
|
||||||
# ModelType.Main: Kandinsky2_1Model,
|
# ModelType.Main: Kandinsky2_1Model,
|
||||||
# ModelType.MoVQ: MoVQModel,
|
# ModelType.MoVQ: MoVQModel,
|
||||||
|
@ -24,6 +24,8 @@ class ModelNotFoundException(Exception):
|
|||||||
class BaseModelType(str, Enum):
|
class BaseModelType(str, Enum):
|
||||||
StableDiffusion1 = "sd-1"
|
StableDiffusion1 = "sd-1"
|
||||||
StableDiffusion2 = "sd-2"
|
StableDiffusion2 = "sd-2"
|
||||||
|
StableDiffusionXL = "sdxl"
|
||||||
|
StableDiffusionXLRefiner = "sdxl-refiner"
|
||||||
#Kandinsky2_1 = "kandinsky-2.1"
|
#Kandinsky2_1 = "kandinsky-2.1"
|
||||||
|
|
||||||
class ModelType(str, Enum):
|
class ModelType(str, Enum):
|
||||||
@ -36,7 +38,9 @@ class ModelType(str, Enum):
|
|||||||
class SubModelType(str, Enum):
|
class SubModelType(str, Enum):
|
||||||
UNet = "unet"
|
UNet = "unet"
|
||||||
TextEncoder = "text_encoder"
|
TextEncoder = "text_encoder"
|
||||||
|
TextEncoder2 = "text_encoder_2"
|
||||||
Tokenizer = "tokenizer"
|
Tokenizer = "tokenizer"
|
||||||
|
Tokenizer2 = "tokenizer_2"
|
||||||
Vae = "vae"
|
Vae = "vae"
|
||||||
Scheduler = "scheduler"
|
Scheduler = "scheduler"
|
||||||
SafetyChecker = "safety_checker"
|
SafetyChecker = "safety_checker"
|
||||||
|
114
invokeai/backend/model_management/models/sdxl.py
Normal file
114
invokeai/backend/model_management/models/sdxl.py
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
import os
|
||||||
|
import json
|
||||||
|
from enum import Enum
|
||||||
|
from pydantic import Field
|
||||||
|
from typing import Literal, Optional
|
||||||
|
from .base import (
|
||||||
|
ModelConfigBase,
|
||||||
|
BaseModelType,
|
||||||
|
ModelType,
|
||||||
|
ModelVariantType,
|
||||||
|
DiffusersModel,
|
||||||
|
read_checkpoint_meta,
|
||||||
|
classproperty,
|
||||||
|
)
|
||||||
|
from omegaconf import OmegaConf
|
||||||
|
|
||||||
|
class StableDiffusionXLModelFormat(str, Enum):
|
||||||
|
Checkpoint = "checkpoint"
|
||||||
|
Diffusers = "diffusers"
|
||||||
|
|
||||||
|
class StableDiffusionXLModel(DiffusersModel):
|
||||||
|
|
||||||
|
# TODO: check that configs overwriten properly
|
||||||
|
class DiffusersConfig(ModelConfigBase):
|
||||||
|
model_format: Literal[StableDiffusionXLModelFormat.Diffusers]
|
||||||
|
vae: Optional[str] = Field(None)
|
||||||
|
variant: ModelVariantType
|
||||||
|
|
||||||
|
class CheckpointConfig(ModelConfigBase):
|
||||||
|
model_format: Literal[StableDiffusionXLModelFormat.Checkpoint]
|
||||||
|
vae: Optional[str] = Field(None)
|
||||||
|
config: str
|
||||||
|
variant: ModelVariantType
|
||||||
|
|
||||||
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
||||||
|
assert base_model in {BaseModelType.StableDiffusionXL, BaseModelType.StableDiffusionXLRefiner}
|
||||||
|
assert model_type == ModelType.Main
|
||||||
|
super().__init__(
|
||||||
|
model_path=model_path,
|
||||||
|
base_model=BaseModelType.StableDiffusionXL,
|
||||||
|
model_type=ModelType.Main,
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def probe_config(cls, path: str, **kwargs):
|
||||||
|
model_format = cls.detect_format(path)
|
||||||
|
ckpt_config_path = kwargs.get("config", None)
|
||||||
|
if model_format == StableDiffusionXLModelFormat.Checkpoint:
|
||||||
|
if ckpt_config_path:
|
||||||
|
ckpt_config = OmegaConf.load(ckpt_config_path)
|
||||||
|
ckpt_config["model"]["params"]["unet_config"]["params"]["in_channels"]
|
||||||
|
|
||||||
|
else:
|
||||||
|
checkpoint = read_checkpoint_meta(path)
|
||||||
|
checkpoint = checkpoint.get('state_dict', checkpoint)
|
||||||
|
in_channels = checkpoint["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
|
||||||
|
|
||||||
|
elif model_format == StableDiffusionXLModelFormat.Diffusers:
|
||||||
|
unet_config_path = os.path.join(path, "unet", "config.json")
|
||||||
|
if os.path.exists(unet_config_path):
|
||||||
|
with open(unet_config_path, "r") as f:
|
||||||
|
unet_config = json.loads(f.read())
|
||||||
|
in_channels = unet_config['in_channels']
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise Exception("Not supported stable diffusion diffusers format(possibly onnx?)")
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f"Unknown stable diffusion 2.* format: {model_format}")
|
||||||
|
|
||||||
|
if in_channels == 9:
|
||||||
|
variant = ModelVariantType.Inpaint
|
||||||
|
elif in_channels == 5:
|
||||||
|
variant = ModelVariantType.Depth
|
||||||
|
elif in_channels == 4:
|
||||||
|
variant = ModelVariantType.Normal
|
||||||
|
else:
|
||||||
|
raise Exception("Unkown stable diffusion 2.* model format")
|
||||||
|
|
||||||
|
if ckpt_config_path is None:
|
||||||
|
# TO DO: implement picking
|
||||||
|
pass
|
||||||
|
|
||||||
|
return cls.create_config(
|
||||||
|
path=path,
|
||||||
|
model_format=model_format,
|
||||||
|
|
||||||
|
config=ckpt_config_path,
|
||||||
|
variant=variant,
|
||||||
|
)
|
||||||
|
|
||||||
|
@classproperty
|
||||||
|
def save_to_config(cls) -> bool:
|
||||||
|
return True
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def detect_format(cls, model_path: str):
|
||||||
|
if os.path.isdir(model_path):
|
||||||
|
return StableDiffusionXLModelFormat.Diffusers
|
||||||
|
else:
|
||||||
|
return StableDiffusionXLModelFormat.Checkpoint
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def convert_if_required(
|
||||||
|
cls,
|
||||||
|
model_path: str,
|
||||||
|
output_path: str,
|
||||||
|
config: ModelConfigBase,
|
||||||
|
base_model: BaseModelType,
|
||||||
|
) -> str:
|
||||||
|
if isinstance(config, cls.CheckpointConfig):
|
||||||
|
raise NotImplementedError('conversion of SDXL checkpoint models to diffusers format is not yet supported')
|
||||||
|
else:
|
||||||
|
return model_path
|
@ -5,14 +5,11 @@ from pydantic import Field
|
|||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Literal, Optional, Union
|
from typing import Literal, Optional, Union
|
||||||
from .base import (
|
from .base import (
|
||||||
ModelBase,
|
|
||||||
ModelConfigBase,
|
ModelConfigBase,
|
||||||
BaseModelType,
|
BaseModelType,
|
||||||
ModelType,
|
ModelType,
|
||||||
SubModelType,
|
|
||||||
ModelVariantType,
|
ModelVariantType,
|
||||||
DiffusersModel,
|
DiffusersModel,
|
||||||
SchedulerPredictionType,
|
|
||||||
SilenceWarnings,
|
SilenceWarnings,
|
||||||
read_checkpoint_meta,
|
read_checkpoint_meta,
|
||||||
classproperty,
|
classproperty,
|
||||||
@ -248,6 +245,12 @@ def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
|
|||||||
ModelVariantType.Normal: "v2-inference-v.yaml", # best guess, as we can't differentiate with base(512)
|
ModelVariantType.Normal: "v2-inference-v.yaml", # best guess, as we can't differentiate with base(512)
|
||||||
ModelVariantType.Inpaint: "v2-inpainting-inference.yaml",
|
ModelVariantType.Inpaint: "v2-inpainting-inference.yaml",
|
||||||
ModelVariantType.Depth: "v2-midas-inference.yaml",
|
ModelVariantType.Depth: "v2-midas-inference.yaml",
|
||||||
|
},
|
||||||
|
# note that these .yaml files don't yet exist!
|
||||||
|
BaseModelType.StableDiffusionXL: {
|
||||||
|
ModelVariantType.Normal: "xl-inference-v.yaml",
|
||||||
|
ModelVariantType.Inpaint: "xl-inpainting-inference.yaml",
|
||||||
|
ModelVariantType.Depth: "xl-midas-inference.yaml",
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -263,6 +266,7 @@ def _select_ckpt_config(version: BaseModelType, variant: ModelVariantType):
|
|||||||
|
|
||||||
|
|
||||||
# TODO: rework
|
# TODO: rework
|
||||||
|
# Note that convert_ckpt_to_diffuses does not currently support conversion of SDXL models
|
||||||
def _convert_ckpt_and_cache(
|
def _convert_ckpt_and_cache(
|
||||||
version: BaseModelType,
|
version: BaseModelType,
|
||||||
model_config: Union[StableDiffusion1Model.CheckpointConfig, StableDiffusion2Model.CheckpointConfig],
|
model_config: Union[StableDiffusion1Model.CheckpointConfig, StableDiffusion2Model.CheckpointConfig],
|
||||||
|
@ -1,4 +1,10 @@
|
|||||||
# This file predefines a few models that the user may want to install.
|
# This file predefines a few models that the user may want to install.
|
||||||
|
sd-1/main/stable-diffusion-xdl-base:
|
||||||
|
description: Stable Diffusion XL base model - NOT YET RELEASED!! (70 GB)
|
||||||
|
repo_id: stabilityai/stable-diffusion-xl-base
|
||||||
|
sd-1/main/stable-diffusion-xdl-refiner:
|
||||||
|
description: Stable Diffusion XL refiner model - NOT YET RELEASED!! (60 GB)
|
||||||
|
repo_id: stabilityai/stable-diffusion-xl-refiner
|
||||||
sd-1/main/stable-diffusion-v1-5:
|
sd-1/main/stable-diffusion-v1-5:
|
||||||
description: Stable Diffusion version 1.5 diffusers model (4.27 GB)
|
description: Stable Diffusion version 1.5 diffusers model (4.27 GB)
|
||||||
repo_id: runwayml/stable-diffusion-v1-5
|
repo_id: runwayml/stable-diffusion-v1-5
|
||||||
|
199
invokeai/frontend/web/dist/assets/App-196ba8f8.js
vendored
Normal file
199
invokeai/frontend/web/dist/assets/App-196ba8f8.js
vendored
Normal file
File diff suppressed because one or more lines are too long
1
invokeai/frontend/web/dist/assets/MantineProvider-52361224.js
vendored
Normal file
1
invokeai/frontend/web/dist/assets/MantineProvider-52361224.js
vendored
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
322
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-a0337544.js
vendored
Normal file
322
invokeai/frontend/web/dist/assets/ThemeLocaleProvider-a0337544.js
vendored
Normal file
File diff suppressed because one or more lines are too long
125
invokeai/frontend/web/dist/assets/index-15b43c6c.js
vendored
Normal file
125
invokeai/frontend/web/dist/assets/index-15b43c6c.js
vendored
Normal file
File diff suppressed because one or more lines are too long
@ -14,6 +14,14 @@ export const clipSkipMap = {
|
|||||||
maxClip: 24,
|
maxClip: 24,
|
||||||
markers: [0, 1, 2, 3, 5, 10, 15, 20, 24],
|
markers: [0, 1, 2, 3, 5, 10, 15, 20, 24],
|
||||||
},
|
},
|
||||||
|
sdxl: {
|
||||||
|
maxClip: 24,
|
||||||
|
markers: [0, 1, 2, 3, 5, 10, 15, 20, 24],
|
||||||
|
},
|
||||||
|
'sdxl-refiner': {
|
||||||
|
maxClip: 24,
|
||||||
|
markers: [0, 1, 2, 3, 5, 10, 15, 20, 24],
|
||||||
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
export default function ParamClipSkip() {
|
export default function ParamClipSkip() {
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
export const MODEL_TYPE_MAP = {
|
export const MODEL_TYPE_MAP = {
|
||||||
'sd-1': 'Stable Diffusion 1.x',
|
'sd-1': 'Stable Diffusion 1.x',
|
||||||
'sd-2': 'Stable Diffusion 2.x',
|
'sd-2': 'Stable Diffusion 2.x',
|
||||||
|
sdxl: 'Stable Diffusion XL',
|
||||||
|
'sdxl-refiner': 'Stable Diffusion XL Refiner',
|
||||||
};
|
};
|
||||||
|
@ -126,7 +126,7 @@ export type HeightParam = z.infer<typeof zHeight>;
|
|||||||
export const isValidHeight = (val: unknown): val is HeightParam =>
|
export const isValidHeight = (val: unknown): val is HeightParam =>
|
||||||
zHeight.safeParse(val).success;
|
zHeight.safeParse(val).success;
|
||||||
|
|
||||||
const zBaseModel = z.enum(['sd-1', 'sd-2']);
|
const zBaseModel = z.enum(['sd-1', 'sd-2', 'sdxl', 'sdxl-refiner']);
|
||||||
|
|
||||||
export type BaseModelParam = z.infer<typeof zBaseModel>;
|
export type BaseModelParam = z.infer<typeof zBaseModel>;
|
||||||
|
|
||||||
|
@ -19,7 +19,7 @@ export default function ScanAdvancedAddModels() {
|
|||||||
const [advancedAddMode, setAdvancedAddMode] =
|
const [advancedAddMode, setAdvancedAddMode] =
|
||||||
useState<ManualAddMode>('diffusers');
|
useState<ManualAddMode>('diffusers');
|
||||||
|
|
||||||
const [isCheckpoint, setIsCheckpoint] = useState<boolean>(false);
|
const [isCheckpoint, setIsCheckpoint] = useState<boolean>(true);
|
||||||
|
|
||||||
useEffect(() => {
|
useEffect(() => {
|
||||||
advancedAddScanModel &&
|
advancedAddScanModel &&
|
||||||
@ -28,7 +28,7 @@ export default function ScanAdvancedAddModels() {
|
|||||||
)
|
)
|
||||||
? setAdvancedAddMode('checkpoint')
|
? setAdvancedAddMode('checkpoint')
|
||||||
: setAdvancedAddMode('diffusers');
|
: setAdvancedAddMode('diffusers');
|
||||||
}, [advancedAddScanModel, setAdvancedAddMode]);
|
}, [advancedAddScanModel, setAdvancedAddMode, isCheckpoint]);
|
||||||
|
|
||||||
const dispatch = useAppDispatch();
|
const dispatch = useAppDispatch();
|
||||||
|
|
||||||
|
@ -58,10 +58,10 @@ export default function MergeModelsPanel() {
|
|||||||
}, [sd1DiffusersModels, sd2DiffusersModels]);
|
}, [sd1DiffusersModels, sd2DiffusersModels]);
|
||||||
|
|
||||||
const [modelOne, setModelOne] = useState<string | null>(
|
const [modelOne, setModelOne] = useState<string | null>(
|
||||||
Object.keys(modelsMap[baseModel])[0]
|
Object.keys(modelsMap[baseModel as keyof typeof modelsMap])[0]
|
||||||
);
|
);
|
||||||
const [modelTwo, setModelTwo] = useState<string | null>(
|
const [modelTwo, setModelTwo] = useState<string | null>(
|
||||||
Object.keys(modelsMap[baseModel])[1]
|
Object.keys(modelsMap[baseModel as keyof typeof modelsMap])[1]
|
||||||
);
|
);
|
||||||
|
|
||||||
const [modelThree, setModelThree] = useState<string | null>(null);
|
const [modelThree, setModelThree] = useState<string | null>(null);
|
||||||
@ -89,9 +89,9 @@ export default function MergeModelsPanel() {
|
|||||||
modelsMap[baseModel as keyof typeof modelsMap]
|
modelsMap[baseModel as keyof typeof modelsMap]
|
||||||
).filter((model) => model !== modelOne && model !== modelThree);
|
).filter((model) => model !== modelOne && model !== modelThree);
|
||||||
|
|
||||||
const modelThreeList = Object.keys(modelsMap[baseModel]).filter(
|
const modelThreeList = Object.keys(
|
||||||
(model) => model !== modelOne && model !== modelTwo
|
modelsMap[baseModel as keyof typeof modelsMap]
|
||||||
);
|
).filter((model) => model !== modelOne && model !== modelTwo);
|
||||||
|
|
||||||
const handleBaseModelChange = (v: string) => {
|
const handleBaseModelChange = (v: string) => {
|
||||||
setBaseModel(v as BaseModelType);
|
setBaseModel(v as BaseModelType);
|
||||||
|
@ -1,4 +1,4 @@
|
|||||||
import { Divider, Flex, Text } from '@chakra-ui/react';
|
import { Badge, Divider, Flex, Text } from '@chakra-ui/react';
|
||||||
import { useForm } from '@mantine/form';
|
import { useForm } from '@mantine/form';
|
||||||
import { makeToast } from 'app/components/Toaster';
|
import { makeToast } from 'app/components/Toaster';
|
||||||
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
import { useAppDispatch, useAppSelector } from 'app/store/storeHooks';
|
||||||
@ -115,7 +115,20 @@ export default function CheckpointModelEdit(props: CheckpointModelEditProps) {
|
|||||||
{MODEL_TYPE_MAP[model.base_model]} Model
|
{MODEL_TYPE_MAP[model.base_model]} Model
|
||||||
</Text>
|
</Text>
|
||||||
</Flex>
|
</Flex>
|
||||||
|
{!['sdxl', 'sdxl-refiner'].includes(model.base_model) ? (
|
||||||
<ModelConvert model={model} />
|
<ModelConvert model={model} />
|
||||||
|
) : (
|
||||||
|
<Badge
|
||||||
|
sx={{
|
||||||
|
p: 2,
|
||||||
|
borderRadius: 4,
|
||||||
|
bg: 'error.200',
|
||||||
|
_dark: { bg: 'error.400' },
|
||||||
|
}}
|
||||||
|
>
|
||||||
|
Conversion Not Supported
|
||||||
|
</Badge>
|
||||||
|
)}
|
||||||
</Flex>
|
</Flex>
|
||||||
<Divider />
|
<Divider />
|
||||||
|
|
||||||
|
@ -8,6 +8,8 @@ import { useTranslation } from 'react-i18next';
|
|||||||
const baseModelSelectData: IAISelectDataType[] = [
|
const baseModelSelectData: IAISelectDataType[] = [
|
||||||
{ value: 'sd-1', label: MODEL_TYPE_MAP['sd-1'] },
|
{ value: 'sd-1', label: MODEL_TYPE_MAP['sd-1'] },
|
||||||
{ value: 'sd-2', label: MODEL_TYPE_MAP['sd-2'] },
|
{ value: 'sd-2', label: MODEL_TYPE_MAP['sd-2'] },
|
||||||
|
{ value: 'sdxl', label: MODEL_TYPE_MAP['sdxl'] },
|
||||||
|
{ value: 'sdxl-refiner', label: MODEL_TYPE_MAP['sdxl-refiner'] },
|
||||||
];
|
];
|
||||||
|
|
||||||
type BaseModelSelectProps = Omit<IAISelectProps, 'data'>;
|
type BaseModelSelectProps = Omit<IAISelectProps, 'data'>;
|
||||||
|
691
invokeai/frontend/web/src/services/api/schema.d.ts
vendored
691
invokeai/frontend/web/src/services/api/schema.d.ts
vendored
@ -316,7 +316,7 @@ export type components = {
|
|||||||
* @description An enumeration.
|
* @description An enumeration.
|
||||||
* @enum {string}
|
* @enum {string}
|
||||||
*/
|
*/
|
||||||
BaseModelType: "sd-1" | "sd-2";
|
BaseModelType: "sd-1" | "sd-2" | "sdxl" | "sdxl-refiner";
|
||||||
/** BoardChanges */
|
/** BoardChanges */
|
||||||
BoardChanges: {
|
BoardChanges: {
|
||||||
/**
|
/**
|
||||||
@ -1219,7 +1219,7 @@ export type components = {
|
|||||||
* @description The nodes in this graph
|
* @description The nodes in this graph
|
||||||
*/
|
*/
|
||||||
nodes?: {
|
nodes?: {
|
||||||
[key: string]: (components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["RealESRGANInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
|
[key: string]: (components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["RealESRGANInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"]) | undefined;
|
||||||
};
|
};
|
||||||
/**
|
/**
|
||||||
* Edges
|
* Edges
|
||||||
@ -1262,7 +1262,7 @@ export type components = {
|
|||||||
* @description The results of node executions
|
* @description The results of node executions
|
||||||
*/
|
*/
|
||||||
results: {
|
results: {
|
||||||
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["VaeLoaderOutput"] | components["schemas"]["MetadataAccumulatorOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["ImageCollectionOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["ClipSkipInvocationOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
|
[key: string]: (components["schemas"]["ImageOutput"] | components["schemas"]["MaskOutput"] | components["schemas"]["ControlOutput"] | components["schemas"]["ModelLoaderOutput"] | components["schemas"]["LoraLoaderOutput"] | components["schemas"]["VaeLoaderOutput"] | components["schemas"]["MetadataAccumulatorOutput"] | components["schemas"]["IntCollectionOutput"] | components["schemas"]["FloatCollectionOutput"] | components["schemas"]["ImageCollectionOutput"] | components["schemas"]["CompelOutput"] | components["schemas"]["ClipSkipInvocationOutput"] | components["schemas"]["LatentsOutput"] | components["schemas"]["IntOutput"] | components["schemas"]["FloatOutput"] | components["schemas"]["NoiseOutput"] | components["schemas"]["PromptOutput"] | components["schemas"]["PromptCollectionOutput"] | components["schemas"]["SDXLModelLoaderOutput"] | components["schemas"]["SDXLRefinerModelLoaderOutput"] | components["schemas"]["GraphInvocationOutput"] | components["schemas"]["IterateInvocationOutput"] | components["schemas"]["CollectInvocationOutput"]) | undefined;
|
||||||
};
|
};
|
||||||
/**
|
/**
|
||||||
* Errors
|
* Errors
|
||||||
@ -2060,6 +2060,12 @@ export type components = {
|
|||||||
* @default false
|
* @default false
|
||||||
*/
|
*/
|
||||||
tiled?: boolean;
|
tiled?: boolean;
|
||||||
|
/**
|
||||||
|
* Fp32
|
||||||
|
* @description Decode in full precision
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
fp32?: boolean;
|
||||||
};
|
};
|
||||||
/**
|
/**
|
||||||
* ImageUrlsDTO
|
* ImageUrlsDTO
|
||||||
@ -2515,6 +2521,12 @@ export type components = {
|
|||||||
* @default false
|
* @default false
|
||||||
*/
|
*/
|
||||||
tiled?: boolean;
|
tiled?: boolean;
|
||||||
|
/**
|
||||||
|
* Fp32
|
||||||
|
* @description Decode in full precision
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
fp32?: boolean;
|
||||||
/**
|
/**
|
||||||
* Metadata
|
* Metadata
|
||||||
* @description Optional core metadata to be written to the image
|
* @description Optional core metadata to be written to the image
|
||||||
@ -3335,7 +3347,7 @@ export type components = {
|
|||||||
/** ModelsList */
|
/** ModelsList */
|
||||||
ModelsList: {
|
ModelsList: {
|
||||||
/** Models */
|
/** Models */
|
||||||
models: (components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"])[];
|
models: (components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"] | components["schemas"]["StableDiffusionXLModelCheckpointConfig"] | components["schemas"]["StableDiffusionXLModelDiffusersConfig"])[];
|
||||||
};
|
};
|
||||||
/**
|
/**
|
||||||
* MultiplyInvocation
|
* MultiplyInvocation
|
||||||
@ -3763,6 +3775,56 @@ export type components = {
|
|||||||
*/
|
*/
|
||||||
prompt: string;
|
prompt: string;
|
||||||
};
|
};
|
||||||
|
/**
|
||||||
|
* PromptsFromFileInvocation
|
||||||
|
* @description Loads prompts from a text file
|
||||||
|
*/
|
||||||
|
PromptsFromFileInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default prompt_from_file
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "prompt_from_file";
|
||||||
|
/**
|
||||||
|
* File Path
|
||||||
|
* @description Path to prompt text file
|
||||||
|
*/
|
||||||
|
file_path: string;
|
||||||
|
/**
|
||||||
|
* Pre Prompt
|
||||||
|
* @description String to prepend to each prompt
|
||||||
|
*/
|
||||||
|
pre_prompt?: string;
|
||||||
|
/**
|
||||||
|
* Post Prompt
|
||||||
|
* @description String to append to each prompt
|
||||||
|
*/
|
||||||
|
post_prompt?: string;
|
||||||
|
/**
|
||||||
|
* Start Line
|
||||||
|
* @description Line in the file to start start from
|
||||||
|
* @default 1
|
||||||
|
*/
|
||||||
|
start_line?: number;
|
||||||
|
/**
|
||||||
|
* Max Prompts
|
||||||
|
* @description Max lines to read from file (0=all)
|
||||||
|
* @default 1
|
||||||
|
*/
|
||||||
|
max_prompts?: number;
|
||||||
|
};
|
||||||
/**
|
/**
|
||||||
* RandomIntInvocation
|
* RandomIntInvocation
|
||||||
* @description Outputs a single random integer.
|
* @description Outputs a single random integer.
|
||||||
@ -4024,6 +4086,533 @@ export type components = {
|
|||||||
* @enum {string}
|
* @enum {string}
|
||||||
*/
|
*/
|
||||||
ResourceOrigin: "internal" | "external";
|
ResourceOrigin: "internal" | "external";
|
||||||
|
/**
|
||||||
|
* SDXLCompelPromptInvocation
|
||||||
|
* @description Parse prompt using compel package to conditioning.
|
||||||
|
*/
|
||||||
|
SDXLCompelPromptInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default sdxl_compel_prompt
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "sdxl_compel_prompt";
|
||||||
|
/**
|
||||||
|
* Prompt
|
||||||
|
* @description Prompt
|
||||||
|
* @default
|
||||||
|
*/
|
||||||
|
prompt?: string;
|
||||||
|
/**
|
||||||
|
* Style
|
||||||
|
* @description Style prompt
|
||||||
|
* @default
|
||||||
|
*/
|
||||||
|
style?: string;
|
||||||
|
/**
|
||||||
|
* Original Width
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
original_width?: number;
|
||||||
|
/**
|
||||||
|
* Original Height
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
original_height?: number;
|
||||||
|
/**
|
||||||
|
* Crop Top
|
||||||
|
* @default 0
|
||||||
|
*/
|
||||||
|
crop_top?: number;
|
||||||
|
/**
|
||||||
|
* Crop Left
|
||||||
|
* @default 0
|
||||||
|
*/
|
||||||
|
crop_left?: number;
|
||||||
|
/**
|
||||||
|
* Target Width
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
target_width?: number;
|
||||||
|
/**
|
||||||
|
* Target Height
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
target_height?: number;
|
||||||
|
/**
|
||||||
|
* Clip1
|
||||||
|
* @description Clip to use
|
||||||
|
*/
|
||||||
|
clip1?: components["schemas"]["ClipField"];
|
||||||
|
/**
|
||||||
|
* Clip2
|
||||||
|
* @description Clip to use
|
||||||
|
*/
|
||||||
|
clip2?: components["schemas"]["ClipField"];
|
||||||
|
};
|
||||||
|
/**
|
||||||
|
* SDXLLatentsToLatentsInvocation
|
||||||
|
* @description Generates latents from conditionings.
|
||||||
|
*/
|
||||||
|
SDXLLatentsToLatentsInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default l2l_sdxl
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "l2l_sdxl";
|
||||||
|
/**
|
||||||
|
* Positive Conditioning
|
||||||
|
* @description Positive conditioning for generation
|
||||||
|
*/
|
||||||
|
positive_conditioning?: components["schemas"]["ConditioningField"];
|
||||||
|
/**
|
||||||
|
* Negative Conditioning
|
||||||
|
* @description Negative conditioning for generation
|
||||||
|
*/
|
||||||
|
negative_conditioning?: components["schemas"]["ConditioningField"];
|
||||||
|
/**
|
||||||
|
* Noise
|
||||||
|
* @description The noise to use
|
||||||
|
*/
|
||||||
|
noise?: components["schemas"]["LatentsField"];
|
||||||
|
/**
|
||||||
|
* Steps
|
||||||
|
* @description The number of steps to use to generate the image
|
||||||
|
* @default 10
|
||||||
|
*/
|
||||||
|
steps?: number;
|
||||||
|
/**
|
||||||
|
* Cfg Scale
|
||||||
|
* @description The Classifier-Free Guidance, higher values may result in a result closer to the prompt
|
||||||
|
* @default 7.5
|
||||||
|
*/
|
||||||
|
cfg_scale?: number | (number)[];
|
||||||
|
/**
|
||||||
|
* Scheduler
|
||||||
|
* @description The scheduler to use
|
||||||
|
* @default euler
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
scheduler?: "ddim" | "ddpm" | "deis" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_a" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc";
|
||||||
|
/**
|
||||||
|
* Unet
|
||||||
|
* @description UNet submodel
|
||||||
|
*/
|
||||||
|
unet?: components["schemas"]["UNetField"];
|
||||||
|
/**
|
||||||
|
* Latents
|
||||||
|
* @description Initial latents
|
||||||
|
*/
|
||||||
|
latents?: components["schemas"]["LatentsField"];
|
||||||
|
/**
|
||||||
|
* Denoising Start
|
||||||
|
* @default 0
|
||||||
|
*/
|
||||||
|
denoising_start?: number;
|
||||||
|
/**
|
||||||
|
* Denoising End
|
||||||
|
* @default 1
|
||||||
|
*/
|
||||||
|
denoising_end?: number;
|
||||||
|
};
|
||||||
|
/**
|
||||||
|
* SDXLModelLoaderInvocation
|
||||||
|
* @description Loads an sdxl base model, outputting its submodels.
|
||||||
|
*/
|
||||||
|
SDXLModelLoaderInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default sdxl_model_loader
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "sdxl_model_loader";
|
||||||
|
/**
|
||||||
|
* Model
|
||||||
|
* @description The model to load
|
||||||
|
*/
|
||||||
|
model: components["schemas"]["MainModelField"];
|
||||||
|
};
|
||||||
|
/**
|
||||||
|
* SDXLModelLoaderOutput
|
||||||
|
* @description SDXL base model loader output
|
||||||
|
*/
|
||||||
|
SDXLModelLoaderOutput: {
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default sdxl_model_loader_output
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "sdxl_model_loader_output";
|
||||||
|
/**
|
||||||
|
* Unet
|
||||||
|
* @description UNet submodel
|
||||||
|
*/
|
||||||
|
unet?: components["schemas"]["UNetField"];
|
||||||
|
/**
|
||||||
|
* Clip
|
||||||
|
* @description Tokenizer and text_encoder submodels
|
||||||
|
*/
|
||||||
|
clip?: components["schemas"]["ClipField"];
|
||||||
|
/**
|
||||||
|
* Clip2
|
||||||
|
* @description Tokenizer and text_encoder submodels
|
||||||
|
*/
|
||||||
|
clip2?: components["schemas"]["ClipField"];
|
||||||
|
/**
|
||||||
|
* Vae
|
||||||
|
* @description Vae submodel
|
||||||
|
*/
|
||||||
|
vae?: components["schemas"]["VaeField"];
|
||||||
|
};
|
||||||
|
/**
|
||||||
|
* SDXLRawPromptInvocation
|
||||||
|
* @description Parse prompt using compel package to conditioning.
|
||||||
|
*/
|
||||||
|
SDXLRawPromptInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default sdxl_raw_prompt
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "sdxl_raw_prompt";
|
||||||
|
/**
|
||||||
|
* Prompt
|
||||||
|
* @description Prompt
|
||||||
|
* @default
|
||||||
|
*/
|
||||||
|
prompt?: string;
|
||||||
|
/**
|
||||||
|
* Style
|
||||||
|
* @description Style prompt
|
||||||
|
* @default
|
||||||
|
*/
|
||||||
|
style?: string;
|
||||||
|
/**
|
||||||
|
* Original Width
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
original_width?: number;
|
||||||
|
/**
|
||||||
|
* Original Height
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
original_height?: number;
|
||||||
|
/**
|
||||||
|
* Crop Top
|
||||||
|
* @default 0
|
||||||
|
*/
|
||||||
|
crop_top?: number;
|
||||||
|
/**
|
||||||
|
* Crop Left
|
||||||
|
* @default 0
|
||||||
|
*/
|
||||||
|
crop_left?: number;
|
||||||
|
/**
|
||||||
|
* Target Width
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
target_width?: number;
|
||||||
|
/**
|
||||||
|
* Target Height
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
target_height?: number;
|
||||||
|
/**
|
||||||
|
* Clip1
|
||||||
|
* @description Clip to use
|
||||||
|
*/
|
||||||
|
clip1?: components["schemas"]["ClipField"];
|
||||||
|
/**
|
||||||
|
* Clip2
|
||||||
|
* @description Clip to use
|
||||||
|
*/
|
||||||
|
clip2?: components["schemas"]["ClipField"];
|
||||||
|
};
|
||||||
|
/**
|
||||||
|
* SDXLRefinerCompelPromptInvocation
|
||||||
|
* @description Parse prompt using compel package to conditioning.
|
||||||
|
*/
|
||||||
|
SDXLRefinerCompelPromptInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default sdxl_refiner_compel_prompt
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "sdxl_refiner_compel_prompt";
|
||||||
|
/**
|
||||||
|
* Style
|
||||||
|
* @description Style prompt
|
||||||
|
* @default
|
||||||
|
*/
|
||||||
|
style?: string;
|
||||||
|
/**
|
||||||
|
* Original Width
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
original_width?: number;
|
||||||
|
/**
|
||||||
|
* Original Height
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
original_height?: number;
|
||||||
|
/**
|
||||||
|
* Crop Top
|
||||||
|
* @default 0
|
||||||
|
*/
|
||||||
|
crop_top?: number;
|
||||||
|
/**
|
||||||
|
* Crop Left
|
||||||
|
* @default 0
|
||||||
|
*/
|
||||||
|
crop_left?: number;
|
||||||
|
/**
|
||||||
|
* Aesthetic Score
|
||||||
|
* @default 6
|
||||||
|
*/
|
||||||
|
aesthetic_score?: number;
|
||||||
|
/**
|
||||||
|
* Clip2
|
||||||
|
* @description Clip to use
|
||||||
|
*/
|
||||||
|
clip2?: components["schemas"]["ClipField"];
|
||||||
|
};
|
||||||
|
/**
|
||||||
|
* SDXLRefinerModelLoaderInvocation
|
||||||
|
* @description Loads an sdxl refiner model, outputting its submodels.
|
||||||
|
*/
|
||||||
|
SDXLRefinerModelLoaderInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default sdxl_refiner_model_loader
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "sdxl_refiner_model_loader";
|
||||||
|
/**
|
||||||
|
* Model
|
||||||
|
* @description The model to load
|
||||||
|
*/
|
||||||
|
model: components["schemas"]["MainModelField"];
|
||||||
|
};
|
||||||
|
/**
|
||||||
|
* SDXLRefinerModelLoaderOutput
|
||||||
|
* @description SDXL refiner model loader output
|
||||||
|
*/
|
||||||
|
SDXLRefinerModelLoaderOutput: {
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default sdxl_refiner_model_loader_output
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "sdxl_refiner_model_loader_output";
|
||||||
|
/**
|
||||||
|
* Unet
|
||||||
|
* @description UNet submodel
|
||||||
|
*/
|
||||||
|
unet?: components["schemas"]["UNetField"];
|
||||||
|
/**
|
||||||
|
* Clip2
|
||||||
|
* @description Tokenizer and text_encoder submodels
|
||||||
|
*/
|
||||||
|
clip2?: components["schemas"]["ClipField"];
|
||||||
|
/**
|
||||||
|
* Vae
|
||||||
|
* @description Vae submodel
|
||||||
|
*/
|
||||||
|
vae?: components["schemas"]["VaeField"];
|
||||||
|
};
|
||||||
|
/**
|
||||||
|
* SDXLRefinerRawPromptInvocation
|
||||||
|
* @description Parse prompt using compel package to conditioning.
|
||||||
|
*/
|
||||||
|
SDXLRefinerRawPromptInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default sdxl_refiner_raw_prompt
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "sdxl_refiner_raw_prompt";
|
||||||
|
/**
|
||||||
|
* Style
|
||||||
|
* @description Style prompt
|
||||||
|
* @default
|
||||||
|
*/
|
||||||
|
style?: string;
|
||||||
|
/**
|
||||||
|
* Original Width
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
original_width?: number;
|
||||||
|
/**
|
||||||
|
* Original Height
|
||||||
|
* @default 1024
|
||||||
|
*/
|
||||||
|
original_height?: number;
|
||||||
|
/**
|
||||||
|
* Crop Top
|
||||||
|
* @default 0
|
||||||
|
*/
|
||||||
|
crop_top?: number;
|
||||||
|
/**
|
||||||
|
* Crop Left
|
||||||
|
* @default 0
|
||||||
|
*/
|
||||||
|
crop_left?: number;
|
||||||
|
/**
|
||||||
|
* Aesthetic Score
|
||||||
|
* @default 6
|
||||||
|
*/
|
||||||
|
aesthetic_score?: number;
|
||||||
|
/**
|
||||||
|
* Clip2
|
||||||
|
* @description Clip to use
|
||||||
|
*/
|
||||||
|
clip2?: components["schemas"]["ClipField"];
|
||||||
|
};
|
||||||
|
/**
|
||||||
|
* SDXLTextToLatentsInvocation
|
||||||
|
* @description Generates latents from conditionings.
|
||||||
|
*/
|
||||||
|
SDXLTextToLatentsInvocation: {
|
||||||
|
/**
|
||||||
|
* Id
|
||||||
|
* @description The id of this node. Must be unique among all nodes.
|
||||||
|
*/
|
||||||
|
id: string;
|
||||||
|
/**
|
||||||
|
* Is Intermediate
|
||||||
|
* @description Whether or not this node is an intermediate node.
|
||||||
|
* @default false
|
||||||
|
*/
|
||||||
|
is_intermediate?: boolean;
|
||||||
|
/**
|
||||||
|
* Type
|
||||||
|
* @default t2l_sdxl
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
type?: "t2l_sdxl";
|
||||||
|
/**
|
||||||
|
* Positive Conditioning
|
||||||
|
* @description Positive conditioning for generation
|
||||||
|
*/
|
||||||
|
positive_conditioning?: components["schemas"]["ConditioningField"];
|
||||||
|
/**
|
||||||
|
* Negative Conditioning
|
||||||
|
* @description Negative conditioning for generation
|
||||||
|
*/
|
||||||
|
negative_conditioning?: components["schemas"]["ConditioningField"];
|
||||||
|
/**
|
||||||
|
* Noise
|
||||||
|
* @description The noise to use
|
||||||
|
*/
|
||||||
|
noise?: components["schemas"]["LatentsField"];
|
||||||
|
/**
|
||||||
|
* Steps
|
||||||
|
* @description The number of steps to use to generate the image
|
||||||
|
* @default 10
|
||||||
|
*/
|
||||||
|
steps?: number;
|
||||||
|
/**
|
||||||
|
* Cfg Scale
|
||||||
|
* @description The Classifier-Free Guidance, higher values may result in a result closer to the prompt
|
||||||
|
* @default 7.5
|
||||||
|
*/
|
||||||
|
cfg_scale?: number | (number)[];
|
||||||
|
/**
|
||||||
|
* Scheduler
|
||||||
|
* @description The scheduler to use
|
||||||
|
* @default euler
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
scheduler?: "ddim" | "ddpm" | "deis" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_a" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc";
|
||||||
|
/**
|
||||||
|
* Unet
|
||||||
|
* @description UNet submodel
|
||||||
|
*/
|
||||||
|
unet?: components["schemas"]["UNetField"];
|
||||||
|
/**
|
||||||
|
* Denoising End
|
||||||
|
* @default 1
|
||||||
|
*/
|
||||||
|
denoising_end?: number;
|
||||||
|
};
|
||||||
/**
|
/**
|
||||||
* ScaleLatentsInvocation
|
* ScaleLatentsInvocation
|
||||||
* @description Scales latents by a given factor.
|
* @description Scales latents by a given factor.
|
||||||
@ -4226,6 +4815,56 @@ export type components = {
|
|||||||
vae?: string;
|
vae?: string;
|
||||||
variant: components["schemas"]["ModelVariantType"];
|
variant: components["schemas"]["ModelVariantType"];
|
||||||
};
|
};
|
||||||
|
/** StableDiffusionXLModelCheckpointConfig */
|
||||||
|
StableDiffusionXLModelCheckpointConfig: {
|
||||||
|
/** Model Name */
|
||||||
|
model_name: string;
|
||||||
|
base_model: components["schemas"]["BaseModelType"];
|
||||||
|
/**
|
||||||
|
* Model Type
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
model_type: "main";
|
||||||
|
/** Path */
|
||||||
|
path: string;
|
||||||
|
/** Description */
|
||||||
|
description?: string;
|
||||||
|
/**
|
||||||
|
* Model Format
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
model_format: "checkpoint";
|
||||||
|
error?: components["schemas"]["ModelError"];
|
||||||
|
/** Vae */
|
||||||
|
vae?: string;
|
||||||
|
/** Config */
|
||||||
|
config: string;
|
||||||
|
variant: components["schemas"]["ModelVariantType"];
|
||||||
|
};
|
||||||
|
/** StableDiffusionXLModelDiffusersConfig */
|
||||||
|
StableDiffusionXLModelDiffusersConfig: {
|
||||||
|
/** Model Name */
|
||||||
|
model_name: string;
|
||||||
|
base_model: components["schemas"]["BaseModelType"];
|
||||||
|
/**
|
||||||
|
* Model Type
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
model_type: "main";
|
||||||
|
/** Path */
|
||||||
|
path: string;
|
||||||
|
/** Description */
|
||||||
|
description?: string;
|
||||||
|
/**
|
||||||
|
* Model Format
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
model_format: "diffusers";
|
||||||
|
error?: components["schemas"]["ModelError"];
|
||||||
|
/** Vae */
|
||||||
|
vae?: string;
|
||||||
|
variant: components["schemas"]["ModelVariantType"];
|
||||||
|
};
|
||||||
/**
|
/**
|
||||||
* StepParamEasingInvocation
|
* StepParamEasingInvocation
|
||||||
* @description Experimental per-step parameter easing for denoising steps
|
* @description Experimental per-step parameter easing for denoising steps
|
||||||
@ -4313,7 +4952,7 @@ export type components = {
|
|||||||
* @description An enumeration.
|
* @description An enumeration.
|
||||||
* @enum {string}
|
* @enum {string}
|
||||||
*/
|
*/
|
||||||
SubModelType: "unet" | "text_encoder" | "tokenizer" | "vae" | "scheduler" | "safety_checker";
|
SubModelType: "unet" | "text_encoder" | "text_encoder_2" | "tokenizer" | "tokenizer_2" | "vae" | "scheduler" | "safety_checker";
|
||||||
/**
|
/**
|
||||||
* SubtractInvocation
|
* SubtractInvocation
|
||||||
* @description Subtracts two numbers
|
* @description Subtracts two numbers
|
||||||
@ -4612,18 +5251,24 @@ export type components = {
|
|||||||
*/
|
*/
|
||||||
image?: components["schemas"]["ImageField"];
|
image?: components["schemas"]["ImageField"];
|
||||||
};
|
};
|
||||||
/**
|
|
||||||
* StableDiffusion1ModelFormat
|
|
||||||
* @description An enumeration.
|
|
||||||
* @enum {string}
|
|
||||||
*/
|
|
||||||
StableDiffusion1ModelFormat: "checkpoint" | "diffusers";
|
|
||||||
/**
|
/**
|
||||||
* StableDiffusion2ModelFormat
|
* StableDiffusion2ModelFormat
|
||||||
* @description An enumeration.
|
* @description An enumeration.
|
||||||
* @enum {string}
|
* @enum {string}
|
||||||
*/
|
*/
|
||||||
StableDiffusion2ModelFormat: "checkpoint" | "diffusers";
|
StableDiffusion2ModelFormat: "checkpoint" | "diffusers";
|
||||||
|
/**
|
||||||
|
* StableDiffusionXLModelFormat
|
||||||
|
* @description An enumeration.
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
StableDiffusionXLModelFormat: "checkpoint" | "diffusers";
|
||||||
|
/**
|
||||||
|
* StableDiffusion1ModelFormat
|
||||||
|
* @description An enumeration.
|
||||||
|
* @enum {string}
|
||||||
|
*/
|
||||||
|
StableDiffusion1ModelFormat: "checkpoint" | "diffusers";
|
||||||
};
|
};
|
||||||
responses: never;
|
responses: never;
|
||||||
parameters: never;
|
parameters: never;
|
||||||
@ -4734,7 +5379,7 @@ export type operations = {
|
|||||||
};
|
};
|
||||||
requestBody: {
|
requestBody: {
|
||||||
content: {
|
content: {
|
||||||
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["RealESRGANInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["RealESRGANInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
responses: {
|
responses: {
|
||||||
@ -4771,7 +5416,7 @@ export type operations = {
|
|||||||
};
|
};
|
||||||
requestBody: {
|
requestBody: {
|
||||||
content: {
|
content: {
|
||||||
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["RealESRGANInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
"application/json": components["schemas"]["LoadImageInvocation"] | components["schemas"]["ShowImageInvocation"] | components["schemas"]["ImageCropInvocation"] | components["schemas"]["ImagePasteInvocation"] | components["schemas"]["MaskFromAlphaInvocation"] | components["schemas"]["ImageMultiplyInvocation"] | components["schemas"]["ImageChannelInvocation"] | components["schemas"]["ImageConvertInvocation"] | components["schemas"]["ImageBlurInvocation"] | components["schemas"]["ImageResizeInvocation"] | components["schemas"]["ImageScaleInvocation"] | components["schemas"]["ImageLerpInvocation"] | components["schemas"]["ImageInverseLerpInvocation"] | components["schemas"]["ControlNetInvocation"] | components["schemas"]["ImageProcessorInvocation"] | components["schemas"]["MainModelLoaderInvocation"] | components["schemas"]["LoraLoaderInvocation"] | components["schemas"]["VaeLoaderInvocation"] | components["schemas"]["MetadataAccumulatorInvocation"] | components["schemas"]["RangeInvocation"] | components["schemas"]["RangeOfSizeInvocation"] | components["schemas"]["RandomRangeInvocation"] | components["schemas"]["ImageCollectionInvocation"] | components["schemas"]["CompelInvocation"] | components["schemas"]["SDXLCompelPromptInvocation"] | components["schemas"]["SDXLRefinerCompelPromptInvocation"] | components["schemas"]["SDXLRawPromptInvocation"] | components["schemas"]["SDXLRefinerRawPromptInvocation"] | components["schemas"]["ClipSkipInvocation"] | components["schemas"]["CvInpaintInvocation"] | components["schemas"]["TextToLatentsInvocation"] | components["schemas"]["LatentsToImageInvocation"] | components["schemas"]["ResizeLatentsInvocation"] | components["schemas"]["ScaleLatentsInvocation"] | components["schemas"]["ImageToLatentsInvocation"] | components["schemas"]["InpaintInvocation"] | components["schemas"]["InfillColorInvocation"] | components["schemas"]["InfillTileInvocation"] | components["schemas"]["InfillPatchMatchInvocation"] | components["schemas"]["AddInvocation"] | components["schemas"]["SubtractInvocation"] | components["schemas"]["MultiplyInvocation"] | components["schemas"]["DivideInvocation"] | components["schemas"]["RandomIntInvocation"] | components["schemas"]["NoiseInvocation"] | components["schemas"]["ParamIntInvocation"] | components["schemas"]["ParamFloatInvocation"] | components["schemas"]["FloatLinearRangeInvocation"] | components["schemas"]["StepParamEasingInvocation"] | components["schemas"]["DynamicPromptInvocation"] | components["schemas"]["PromptsFromFileInvocation"] | components["schemas"]["SDXLModelLoaderInvocation"] | components["schemas"]["SDXLRefinerModelLoaderInvocation"] | components["schemas"]["SDXLTextToLatentsInvocation"] | components["schemas"]["SDXLLatentsToLatentsInvocation"] | components["schemas"]["RealESRGANInvocation"] | components["schemas"]["GraphInvocation"] | components["schemas"]["IterateInvocation"] | components["schemas"]["CollectInvocation"] | components["schemas"]["CannyImageProcessorInvocation"] | components["schemas"]["HedImageProcessorInvocation"] | components["schemas"]["LineartImageProcessorInvocation"] | components["schemas"]["LineartAnimeImageProcessorInvocation"] | components["schemas"]["OpenposeImageProcessorInvocation"] | components["schemas"]["MidasDepthImageProcessorInvocation"] | components["schemas"]["NormalbaeImageProcessorInvocation"] | components["schemas"]["MlsdImageProcessorInvocation"] | components["schemas"]["PidiImageProcessorInvocation"] | components["schemas"]["ContentShuffleImageProcessorInvocation"] | components["schemas"]["ZoeDepthImageProcessorInvocation"] | components["schemas"]["MediapipeFaceProcessorInvocation"] | components["schemas"]["LeresImageProcessorInvocation"] | components["schemas"]["TileResamplerProcessorInvocation"] | components["schemas"]["SegmentAnythingProcessorInvocation"] | components["schemas"]["LatentsToLatentsInvocation"];
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
responses: {
|
responses: {
|
||||||
@ -4969,8 +5614,8 @@ export type operations = {
|
|||||||
list_models: {
|
list_models: {
|
||||||
parameters: {
|
parameters: {
|
||||||
query?: {
|
query?: {
|
||||||
/** @description Base model */
|
/** @description Base models to include */
|
||||||
base_model?: components["schemas"]["BaseModelType"];
|
base_models?: (components["schemas"]["BaseModelType"])[];
|
||||||
/** @description The type of model to get */
|
/** @description The type of model to get */
|
||||||
model_type?: components["schemas"]["ModelType"];
|
model_type?: components["schemas"]["ModelType"];
|
||||||
};
|
};
|
||||||
@ -5035,14 +5680,14 @@ export type operations = {
|
|||||||
};
|
};
|
||||||
requestBody: {
|
requestBody: {
|
||||||
content: {
|
content: {
|
||||||
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"];
|
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"] | components["schemas"]["StableDiffusionXLModelCheckpointConfig"] | components["schemas"]["StableDiffusionXLModelDiffusersConfig"];
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
responses: {
|
responses: {
|
||||||
/** @description The model was updated successfully */
|
/** @description The model was updated successfully */
|
||||||
200: {
|
200: {
|
||||||
content: {
|
content: {
|
||||||
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"];
|
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"] | components["schemas"]["StableDiffusionXLModelCheckpointConfig"] | components["schemas"]["StableDiffusionXLModelDiffusersConfig"];
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
/** @description Bad request */
|
/** @description Bad request */
|
||||||
@ -5073,13 +5718,15 @@ export type operations = {
|
|||||||
/** @description The model imported successfully */
|
/** @description The model imported successfully */
|
||||||
201: {
|
201: {
|
||||||
content: {
|
content: {
|
||||||
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"];
|
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"] | components["schemas"]["StableDiffusionXLModelCheckpointConfig"] | components["schemas"]["StableDiffusionXLModelDiffusersConfig"];
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
/** @description The model could not be found */
|
/** @description The model could not be found */
|
||||||
404: never;
|
404: never;
|
||||||
/** @description There is already a model corresponding to this path or repo_id */
|
/** @description There is already a model corresponding to this path or repo_id */
|
||||||
409: never;
|
409: never;
|
||||||
|
/** @description Unrecognized file/folder format */
|
||||||
|
415: never;
|
||||||
/** @description Validation Error */
|
/** @description Validation Error */
|
||||||
422: {
|
422: {
|
||||||
content: {
|
content: {
|
||||||
@ -5097,14 +5744,14 @@ export type operations = {
|
|||||||
add_model: {
|
add_model: {
|
||||||
requestBody: {
|
requestBody: {
|
||||||
content: {
|
content: {
|
||||||
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"];
|
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"] | components["schemas"]["StableDiffusionXLModelCheckpointConfig"] | components["schemas"]["StableDiffusionXLModelDiffusersConfig"];
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
responses: {
|
responses: {
|
||||||
/** @description The model added successfully */
|
/** @description The model added successfully */
|
||||||
201: {
|
201: {
|
||||||
content: {
|
content: {
|
||||||
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"];
|
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"] | components["schemas"]["StableDiffusionXLModelCheckpointConfig"] | components["schemas"]["StableDiffusionXLModelDiffusersConfig"];
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
/** @description The model could not be found */
|
/** @description The model could not be found */
|
||||||
@ -5144,7 +5791,7 @@ export type operations = {
|
|||||||
/** @description Model converted successfully */
|
/** @description Model converted successfully */
|
||||||
200: {
|
200: {
|
||||||
content: {
|
content: {
|
||||||
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"];
|
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"] | components["schemas"]["StableDiffusionXLModelCheckpointConfig"] | components["schemas"]["StableDiffusionXLModelDiffusersConfig"];
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
/** @description Bad request */
|
/** @description Bad request */
|
||||||
@ -5233,7 +5880,7 @@ export type operations = {
|
|||||||
/** @description Model converted successfully */
|
/** @description Model converted successfully */
|
||||||
200: {
|
200: {
|
||||||
content: {
|
content: {
|
||||||
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"];
|
"application/json": components["schemas"]["StableDiffusion1ModelCheckpointConfig"] | components["schemas"]["StableDiffusion1ModelDiffusersConfig"] | components["schemas"]["VaeModelConfig"] | components["schemas"]["LoRAModelConfig"] | components["schemas"]["ControlNetModelConfig"] | components["schemas"]["TextualInversionModelConfig"] | components["schemas"]["StableDiffusion2ModelCheckpointConfig"] | components["schemas"]["StableDiffusion2ModelDiffusersConfig"] | components["schemas"]["StableDiffusionXLModelCheckpointConfig"] | components["schemas"]["StableDiffusionXLModelDiffusersConfig"];
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
/** @description Incompatible models */
|
/** @description Incompatible models */
|
||||||
|
@ -47,10 +47,12 @@ export type TextualInversionModelConfig =
|
|||||||
components['schemas']['TextualInversionModelConfig'];
|
components['schemas']['TextualInversionModelConfig'];
|
||||||
export type DiffusersModelConfig =
|
export type DiffusersModelConfig =
|
||||||
| components['schemas']['StableDiffusion1ModelDiffusersConfig']
|
| components['schemas']['StableDiffusion1ModelDiffusersConfig']
|
||||||
| components['schemas']['StableDiffusion2ModelDiffusersConfig'];
|
| components['schemas']['StableDiffusion2ModelDiffusersConfig']
|
||||||
|
| components['schemas']['StableDiffusionXLModelDiffusersConfig'];
|
||||||
export type CheckpointModelConfig =
|
export type CheckpointModelConfig =
|
||||||
| components['schemas']['StableDiffusion1ModelCheckpointConfig']
|
| components['schemas']['StableDiffusion1ModelCheckpointConfig']
|
||||||
| components['schemas']['StableDiffusion2ModelCheckpointConfig'];
|
| components['schemas']['StableDiffusion2ModelCheckpointConfig']
|
||||||
|
| components['schemas']['StableDiffusionXLModelCheckpointConfig'];
|
||||||
export type MainModelConfig = DiffusersModelConfig | CheckpointModelConfig;
|
export type MainModelConfig = DiffusersModelConfig | CheckpointModelConfig;
|
||||||
export type AnyModelConfig =
|
export type AnyModelConfig =
|
||||||
| LoRAModelConfig
|
| LoRAModelConfig
|
||||||
|
@ -38,7 +38,7 @@ dependencies = [
|
|||||||
"albumentations",
|
"albumentations",
|
||||||
"click",
|
"click",
|
||||||
"clip_anytorch", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
|
"clip_anytorch", # replacing "clip @ https://github.com/openai/CLIP/archive/eaa22acb90a5876642d0507623e859909230a52d.zip",
|
||||||
"compel>=1.2.1",
|
"compel==2.0.0rc2",
|
||||||
"controlnet-aux>=0.0.6",
|
"controlnet-aux>=0.0.6",
|
||||||
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
|
"timm==0.6.13", # needed to override timm latest in controlnet_aux, see https://github.com/isl-org/ZoeDepth/issues/26
|
||||||
"datasets",
|
"datasets",
|
||||||
|
Loading…
Reference in New Issue
Block a user