configure/install basically working; needs edge case testing

This commit is contained in:
Lincoln Stein 2023-06-16 22:54:36 -04:00
parent ada7399753
commit f28d50070e
12 changed files with 701 additions and 588 deletions

View File

@ -56,11 +56,10 @@ from invokeai.frontend.install.widgets import (
)
from invokeai.backend.install.legacy_arg_parsing import legacy_parser
from invokeai.backend.install.model_install_backend import (
default_dataset,
download_from_hf,
hf_download_from_pretrained,
hf_download_with_resume,
recommended_datasets,
UserSelections,
InstallSelections,
ModelInstall,
)
from invokeai.backend.model_management.model_probe import (
ModelProbe, ModelType, BaseModelType, SchedulerPredictionType
@ -198,8 +197,8 @@ def download_conversion_models():
# sd-1
repo_id = 'openai/clip-vit-large-patch14'
download_from_hf(CLIPTokenizer, repo_id, target_dir / 'clip-vit-large-patch14')
download_from_hf(CLIPTextModel, repo_id, target_dir / 'clip-vit-large-patch14')
hf_download_from_pretrained(CLIPTokenizer, repo_id, target_dir / 'clip-vit-large-patch14')
hf_download_from_pretrained(CLIPTextModel, repo_id, target_dir / 'clip-vit-large-patch14')
# sd-2
repo_id = "stabilityai/stable-diffusion-2"
@ -275,8 +274,8 @@ def download_clipseg():
logger.info("Installing clipseg model for text-based masking...")
CLIPSEG_MODEL = "CIDAS/clipseg-rd64-refined"
try:
download_from_hf(AutoProcessor, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg')
download_from_hf(CLIPSegForImageSegmentation, CLIPSEG_MODEL,'models/core/misc/clipseg')
hf_download_from_pretrained(AutoProcessor, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg')
hf_download_from_pretrained(CLIPSegForImageSegmentation, CLIPSEG_MODEL, config.root_path / 'models/core/misc/clipseg')
except Exception:
logger.info("Error installing clipseg model:")
logger.info(traceback.format_exc())
@ -592,7 +591,7 @@ class EditOptApplication(npyscreen.NPSAppManaged):
self.program_opts = program_opts
self.invokeai_opts = invokeai_opts
self.user_cancelled = False
self.user_selections = default_user_selections(program_opts)
self.install_selections = default_user_selections(program_opts)
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
@ -627,19 +626,19 @@ def default_startup_options(init_file: Path) -> Namespace:
opts.nsfw_checker = True
return opts
def default_user_selections(program_opts: Namespace) -> UserSelections:
return UserSelections(
install_models=default_dataset()
def default_user_selections(program_opts: Namespace) -> InstallSelections:
installer = ModelInstall(config)
models = installer.all_models()
return InstallSelections(
install_models=[models[installer.default_model()].path or models[installer.default_model()].repo_id]
if program_opts.default_only
else recommended_datasets()
else [models[x].path or models[x].repo_id for x in installer.recommended_models()]
if program_opts.yes_to_all
else dict(),
purge_deleted_models=False,
else list(),
scan_directory=None,
autoscan_on_startup=None,
)
# -------------------------------------
def initialize_rootdir(root: Path, yes_to_all: bool = False):
logger.info("** INITIALIZING INVOKEAI RUNTIME DIRECTORY **")
@ -696,7 +695,7 @@ def run_console_ui(
if editApp.user_cancelled:
return (None, None)
else:
return (editApp.new_opts, editApp.user_selections)
return (editApp.new_opts, editApp.install_selections)
# -------------------------------------

View File

@ -2,18 +2,18 @@
Utility (backend) functions used by model_install.py
"""
import os
import re
import shutil
import sys
import traceback
import warnings
from dataclasses import dataclass,field
from pathlib import Path
from tempfile import TemporaryFile
from typing import List, Dict, Set, Callable
from tempfile import TemporaryDirectory
from typing import List, Dict, Callable, Union, Set
import requests
from diffusers import AutoencoderKL
from huggingface_hub import hf_hub_url, HfFolder
from diffusers import AutoencoderKL, StableDiffusionPipeline
from huggingface_hub import hf_hub_url, HfFolder, HfApi
from omegaconf import OmegaConf
from omegaconf.dictconfig import DictConfig
from tqdm import tqdm
@ -21,7 +21,9 @@ from tqdm import tqdm
import invokeai.configs as configs
from invokeai.app.services.config import InvokeAIAppConfig
from invokeai.backend.model_management import ModelManager, ModelType, BaseModelType
from invokeai.backend.model_management import ModelManager, ModelType, BaseModelType, ModelVariantType
from invokeai.backend.model_management.model_probe import ModelProbe, SchedulerPredictionType, ModelProbeInfo
from invokeai.backend.util import download_with_resume
from ..stable_diffusion import StableDiffusionGeneratorPipeline
from ..util.logging import InvokeAILogger
@ -29,19 +31,11 @@ warnings.filterwarnings("ignore")
# --------------------------globals-----------------------
config = InvokeAIAppConfig.get_config()
Model_dir = "models"
Weights_dir = "ldm/stable-diffusion-v1/"
logger = InvokeAILogger.getLogger(name='InvokeAI')
# the initial "configs" dir is now bundled in the `invokeai.configs` package
Dataset_path = Path(configs.__path__[0]) / "INITIAL_MODELS.yaml"
# initial models omegaconf
Datasets = None
# logger
logger = InvokeAILogger.getLogger(name='InvokeAI')
Config_preamble = """
# This file describes the alternative machine learning models
# available to InvokeAI script.
@ -52,6 +46,24 @@ Config_preamble = """
# was trained on.
"""
LEGACY_CONFIGS = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: 'v1-inference.yaml',
ModelVariantType.Inpaint: 'v1-inpainting-inference.yaml',
},
BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: {
SchedulerPredictionType.Epsilon: 'v2-inference.yaml',
SchedulerPredictionType.VPrediction: 'v2-inference-v.yaml',
},
ModelVariantType.Inpaint: {
SchedulerPredictionType.Epsilon: 'v2-inpainting-inference.yaml',
SchedulerPredictionType.VPrediction: 'v2-inpainting-inference-v.yaml',
}
}
}
@dataclass
class ModelInstallList:
'''Class for listing models to be installed/removed'''
@ -59,18 +71,11 @@ class ModelInstallList:
remove_models: List[str] = field(default_factory=list)
@dataclass
class UserSelections():
class InstallSelections():
install_models: List[str]= field(default_factory=list)
remove_models: List[str]=field(default_factory=list)
install_cn_models: List[str] = field(default_factory=list)
remove_cn_models: List[str] = field(default_factory=list)
install_lora_models: List[str] = field(default_factory=list)
remove_lora_models: List[str] = field(default_factory=list)
install_ti_models: List[str] = field(default_factory=list)
remove_ti_models: List[str] = field(default_factory=list)
scan_directory: Path = None
autoscan_on_startup: bool=False
import_model_paths: str=None
@dataclass
class ModelLoadInfo():
@ -82,18 +87,30 @@ class ModelLoadInfo():
description: str = ''
installed: bool = False
recommended: bool = False
default: bool = False
class ModelInstall(object):
def __init__(self,config:InvokeAIAppConfig):
def __init__(self,
config:InvokeAIAppConfig,
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
access_token:str = None):
self.config = config
self.mgr = ModelManager(config.model_conf_path)
self.datasets = OmegaConf.load(Dataset_path)
self.prediction_helper = prediction_type_helper
self.access_token = access_token or HfFolder.get_token()
self.reverse_paths = self._reverse_paths(self.datasets)
def all_models(self)->Dict[str,ModelLoadInfo]:
'''
Return dict of model_key=>ModelStatus
Return dict of model_key=>ModelLoadInfo objects.
This method consolidates and simplifies the entries in both
models.yaml and INITIAL_MODELS.yaml so that they can
be treated uniformly. It also sorts the models alphabetically
by their name, to improve the display somewhat.
'''
model_dict = dict()
# first populate with the entries in INITIAL_MODELS.yaml
for key, value in self.datasets.items():
name,base,model_type = ModelManager.parse_key(key)
@ -129,101 +146,236 @@ class ModelInstall(object):
models.add(key)
return models
def recommended_models(self)->Set[str]:
starters = self.starter_models()
return set([x for x in starters if self.datasets[x].get('recommended',False)])
def default_config_file():
return config.model_conf_path
def default_model(self)->str:
starters = self.starter_models()
defaults = [x for x in starters if self.datasets[x].get('default',False)]
return defaults[0]
def sd_configs():
return config.legacy_conf_path
def install(self, selections: InstallSelections):
job = 1
jobs = len(selections.remove_models) + len(selections.install_models)
if selections.scan_directory:
jobs += 1
def initial_models():
global Datasets
if Datasets:
return Datasets
return (Datasets := OmegaConf.load(Dataset_path)['diffusers'])
# remove requested models
for key in selections.remove_models:
name,base,mtype = self.mgr.parse_key(key)
logger.info(f'Deleting {mtype} model {name} [{job}/{jobs}]')
self.mgr.del_model(name,base,mtype)
job += 1
def add_models(model_manager, config_file_path: Path, models: List[tuple[str,str,str]]):
print(f'Installing {models}')
# add requested models
for path in selections.install_models:
logger.info(f'Installing {path} [{job}/{jobs}]')
self.heuristic_install(path)
job += 1
def del_models(model_manager, config_file_path: Path, models: List[tuple[str,str,str]]):
for base, model_type, name in models:
logger.info(f"Deleting {name}...")
model_manager.del_model(name, base, model_type)
model_manager.commit(config_file_path)
# import from the scan directory, if any
if path := selections.scan_directory:
logger.info(f'Scanning and importing models from directory {path} [{job}/{jobs}]')
self.heuristic_install(path)
def install_requested_models(
diffusers: ModelInstallList = None,
controlnet: ModelInstallList = None,
lora: ModelInstallList = None,
ti: ModelInstallList = None,
cn_model_map: Dict[str,str] = None, # temporary - move to model manager
scan_directory: Path = None,
external_models: List[str] = None,
scan_at_startup: bool = False,
precision: str = "float16",
config_file_path: Path = None,
model_config_file_callback: Callable[[Path],Path] = None,
):
"""
Entry point for installing/deleting starter models, or installing external models.
"""
access_token = HfFolder.get_token()
config_file_path = config_file_path or default_config_file()
if not config_file_path.exists():
open(config_file_path, "w")
self.mgr.commit()
# prevent circular import here
from ..model_management import ModelManager
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
if selections.autoscan_on_startup and Path(selections.scan_directory).is_dir():
update_autoconvert_dir(selections.scan_directory)
else:
update_autoconvert_dir(None)
for x in [controlnet, lora, ti, diffusers]:
if x:
add_models(model_manager, config_file_path, x.install_models)
del_models(model_manager, config_file_path, x.remove_models)
def heuristic_install(self, model_path_id_or_url: Union[str,Path]):
# A little hack to allow nested routines to retrieve info on the requested ID
self.current_id = model_path_id_or_url
# if diffusers:
path = Path(model_path_id_or_url)
# if diffusers.install_models and len(diffusers.install_models) > 0:
# logger.info("Installing requested models")
# downloaded_paths = download_weight_datasets(
# models=diffusers.install_models,
# access_token=None,
# precision=precision,
# )
# successful = {x:v for x,v in downloaded_paths.items() if v is not None}
# if len(successful) > 0:
# update_config_file(successful, config_file_path)
# if len(successful) < len(diffusers.install_models):
# unsuccessful = [x for x in downloaded_paths if downloaded_paths[x] is None]
# logger.warning(f"Some of the model downloads were not successful: {unsuccessful}")
# checkpoint file, or similar
if path.is_file():
self._install_path(path)
return
# due to above, we have to reload the model manager because conf file
# was changed behind its back
model_manager = ModelManager(OmegaConf.load(config_file_path), precision=precision)
# folders style or similar
if path.is_dir() and any([(path/x).exists() for x in ['config.json','model_index.json','learned_embeds.bin']]):
self._install_path(path)
return
external_models = external_models or list()
if scan_directory:
external_models.append(str(scan_directory))
# recursive scan
if path.is_dir():
for child in path.iterdir():
self.heuristic_install(child)
return
if len(external_models) > 0:
logger.info("INSTALLING EXTERNAL MODELS")
for path_url_or_repo in external_models:
logger.debug(path_url_or_repo)
try:
model_manager.heuristic_import(
path_url_or_repo,
commit_to_conf=config_file_path,
config_file_callback = model_config_file_callback,
# huggingface repo
parts = str(path).split('/')
if len(parts) == 2:
self._install_repo(str(path))
return
# a URL
if model_path_id_or_url.startswith(("http:", "https:", "ftp:")):
self._install_url(model_path_id_or_url)
return
logger.warning(f'{str(model_path_id_or_url)} is not recognized as a local path, repo ID or URL. Skipping')
# install a model from a local path. The optional info parameter is there to prevent
# the model from being probed twice in the event that it has already been probed.
def _install_path(self, path: Path, info: ModelProbeInfo=None):
try:
info = info or ModelProbe().heuristic_probe(path,self.prediction_helper)
if info.model_type == ModelType.Pipeline:
attributes = self._make_attributes(path,info)
self.mgr.add_model(model_name = path.stem if info.format=='checkpoint' else path.name,
base_model = info.base_type,
model_type = info.model_type,
model_attributes = attributes
)
except Exception as e:
logger.warning(f'{str(e)} Skipping registration.')
def _install_url(self, url: str):
# copy to a staging area, probe, import and delete
with TemporaryDirectory(dir=self.config.models_path) as staging:
location = download_with_resume(url,Path(staging))
if not location:
logger.error(f'Unable to download {url}. Skipping.')
info = ModelProbe().heuristic_probe(location)
dest = self.config.models_path / info.base_type.value / info.model_type.value / location.name
models_path = shutil.move(location,dest)
# staged version will be garbage-collected at this time
self._install_path(Path(models_path), info)
def _get_model_name(self,path_name: str, location: Path)->str:
'''
Calculate a name for the model - primitive implementation.
'''
if key := self.reverse_paths.get(path_name):
(name, base, mtype) = ModelManager.parse_key(key)
return name
else:
return location.stem
def _install_repo(self, repo_id: str):
hinfo = HfApi().model_info(repo_id)
# we try to figure out how to download this most economically
# list all the files in the repo
files = [x.rfilename for x in hinfo.siblings]
with TemporaryDirectory(dir=self.config.models_path) as staging:
staging = Path(staging)
if 'model_index.json' in files:
location = self._download_hf_pipeline(repo_id, staging) # pipeline
elif 'pytorch_lora_weights.bin' in files:
location = self._download_hf_model(repo_id, ['pytorch_lora_weights.bin'], staging) # LoRA
elif self.config.precision=='float16' and 'diffusion_pytorch_model.fp16.safetensors' in files: # vae, controlnet or some other standalone
files = ['config.json', 'diffusion_pytorch_model.fp16.safetensors']
location = self._download_hf_model(repo_id, files, staging)
elif 'diffusion_pytorch_model.safetensors' in files:
files = ['config.json', 'diffusion_pytorch_model.safetensors']
location = self._download_hf_model(repo_id, files, staging)
elif 'learned_embeds.bin' in files:
location = self._download_hf_model(repo_id, ['learned_embeds.bin'], staging)
info = ModelProbe().heuristic_probe(location, self.prediction_helper)
dest = self.config.models_path / info.base_type.value / info.model_type.value / self._get_model_name(repo_id,location)
if dest.exists():
shutil.rmtree(dest)
shutil.copytree(location,dest)
self._install_path(dest, info)
def _make_attributes(self, path: Path, info: ModelProbeInfo)->dict:
# convoluted way to retrieve the description from datasets
description = f'{info.base_type.value} {info.model_type.value} model'
if key := self.reverse_paths.get(self.current_id):
if key in self.datasets:
description = self.datasets[key]['description']
attributes = dict(
path = str(path),
description = str(description),
format = info.format,
)
if info.model_type == ModelType.Pipeline:
attributes.update(
dict(
variant = info.variant_type,
)
)
if info.base_type == BaseModelType.StableDiffusion2:
attributes.update(
dict(
prediction_type = info.prediction_type,
upcast_attention = info.prediction_type == SchedulerPredictionType.VPrediction,
)
)
except KeyboardInterrupt:
sys.exit(-1)
except Exception:
pass
if info.format=="checkpoint":
try:
legacy_conf = LEGACY_CONFIGS[info.base_type][info.variant_type][info.prediction_type] if BaseModelType.StableDiffusion2 \
else LEGACY_CONFIGS[info.base_type][info.variant_type]
except KeyError:
legacy_conf = 'v1-inference.yaml' # best guess
if scan_at_startup and scan_directory.is_dir():
update_autoconvert_dir(scan_directory)
else:
update_autoconvert_dir(None)
attributes.update(
dict(
config = str(self.config.legacy_conf_path / legacy_conf)
)
)
return attributes
def _download_hf_pipeline(self, repo_id: str, staging: Path)->Path:
'''
This retrieves a StableDiffusion model from cache or remote and then
does a save_pretrained() to the indicated staging area.
'''
_,name = repo_id.split("/")
revisions = ['fp16','main'] if self.config.precision=='float16' else ['main']
model = None
for revision in revisions:
try:
model = StableDiffusionPipeline.from_pretrained(repo_id,revision=revision,safety_checker=None)
except: # most errors are due to fp16 not being present. Fix this to catch other errors
pass
if model:
break
if not model:
logger.error(f'Diffusers model {repo_id} could not be downloaded. Skipping.')
return None
model.save_pretrained(staging / name, safe_serialization=True)
return staging / name
def _download_hf_model(self, repo_id: str, files: List[str], staging: Path)->Path:
_,name = repo_id.split("/")
location = staging / name
paths = list()
for filename in files:
p = hf_download_with_resume(repo_id,
model_dir=location,
model_name=filename,
access_token = self.access_token
)
if p:
paths.append(p)
else:
logger.warning(f'Could not download {filename} from {repo_id}.')
return location if len(paths)>0 else None
@classmethod
def _reverse_paths(cls,datasets)->dict:
'''
Reverse mapping from repo_id/path to destination name.
'''
return {v.get('path') or v.get('repo_id') : k for k, v in datasets.items()}
def update_autoconvert_dir(autodir: Path):
'''
@ -249,89 +401,7 @@ def yes_or_no(prompt: str, default_yes=True):
return response[0] in ("y", "Y")
# ---------------------------------------------
def recommended_datasets() -> List['str']:
datasets = set()
for ds in initial_models().keys():
if initial_models()[ds].get("recommended", False):
datasets.add(ds)
return list(datasets)
# ---------------------------------------------
def default_dataset() -> dict:
datasets = set()
for ds in initial_models().keys():
if initial_models()[ds].get("default", False):
datasets.add(ds)
return list(datasets)
# ---------------------------------------------
def all_datasets() -> dict:
datasets = dict()
for ds in initial_models().keys():
datasets[ds] = True
return datasets
# ---------------------------------------------
# look for legacy model.ckpt in models directory and offer to
# normalize its name
def migrate_models_ckpt():
model_path = os.path.join(config.root_dir, Model_dir, Weights_dir)
if not os.path.exists(os.path.join(model_path, "model.ckpt")):
return
new_name = initial_models()["stable-diffusion-1.4"]["file"]
logger.warning(
'The Stable Diffusion v4.1 "model.ckpt" is already installed. The name will be changed to {new_name} to avoid confusion.'
)
logger.warning(f"model.ckpt => {new_name}")
os.replace(
os.path.join(model_path, "model.ckpt"), os.path.join(model_path, new_name)
)
# ---------------------------------------------
def download_weight_datasets(
models: List[str], access_token: str, precision: str = "float32"
):
migrate_models_ckpt()
successful = dict()
for mod in models:
logger.info(f"Downloading {mod}:")
successful[mod] = _download_repo_or_file(
initial_models()[mod], access_token, precision=precision
)
return successful
def _download_repo_or_file(
mconfig: DictConfig, access_token: str, precision: str = "float32"
) -> Path:
path = None
if mconfig["format"] == "ckpt":
path = _download_ckpt_weights(mconfig, access_token)
else:
path = _download_diffusion_weights(mconfig, access_token, precision=precision)
if "vae" in mconfig and "repo_id" in mconfig["vae"]:
_download_diffusion_weights(
mconfig["vae"], access_token, precision=precision
)
return path
def _download_ckpt_weights(mconfig: DictConfig, access_token: str) -> Path:
repo_id = mconfig["repo_id"]
filename = mconfig["file"]
cache_dir = os.path.join(config.root_dir, Model_dir, Weights_dir)
return hf_download_with_resume(
repo_id=repo_id,
model_dir=cache_dir,
model_name=filename,
access_token=access_token,
)
# ---------------------------------------------
def download_from_hf(
def hf_download_from_pretrained(
model_class: object, model_name: str, destination: Path, **kwargs
):
logger = InvokeAILogger.getLogger('InvokeAI')
@ -345,35 +415,6 @@ def download_from_hf(
model.save_pretrained(destination, safe_serialization=True)
return destination
def _download_diffusion_weights(
mconfig: DictConfig, access_token: str, precision: str = "float32"
):
repo_id = mconfig["repo_id"]
model_class = (
StableDiffusionGeneratorPipeline
if mconfig.get("format", None) == "diffusers"
else AutoencoderKL
)
extra_arg_list = [{"revision": "fp16"}, {}] if precision == "float16" else [{}]
path = None
for extra_args in extra_arg_list:
try:
path = download_from_hf(
model_class,
repo_id,
safety_checker=None,
**extra_args,
)
except OSError as e:
if 'Revision Not Found' in str(e):
pass
else:
logger.error(str(e))
if path:
break
return path
# ---------------------------------------------
def hf_download_with_resume(
repo_id: str,
@ -432,128 +473,3 @@ def hf_download_with_resume(
return model_dest
# ---------------------------------------------
def update_config_file(successfully_downloaded: dict, config_file: Path):
config_file = (
Path(config_file) if config_file is not None else default_config_file()
)
# In some cases (incomplete setup, etc), the default configs directory might be missing.
# Create it if it doesn't exist.
# this check is ignored if opt.config_file is specified - user is assumed to know what they
# are doing if they are passing a custom config file from elsewhere.
if config_file is default_config_file() and not config_file.parent.exists():
configs_src = Dataset_path.parent
configs_dest = default_config_file().parent
shutil.copytree(configs_src, configs_dest, dirs_exist_ok=True)
yaml = new_config_file_contents(successfully_downloaded, config_file)
try:
backup = None
if os.path.exists(config_file):
logger.warning(
f"{config_file.name} exists. Renaming to {config_file.stem}.yaml.orig"
)
backup = config_file.with_suffix(".yaml.orig")
## Ugh. Windows is unable to overwrite an existing backup file, raises a WinError 183
if sys.platform == "win32" and backup.is_file():
backup.unlink()
config_file.rename(backup)
with TemporaryFile() as tmp:
tmp.write(Config_preamble.encode())
tmp.write(yaml.encode())
with open(str(config_file.expanduser().resolve()), "wb") as new_config:
tmp.seek(0)
new_config.write(tmp.read())
except Exception as e:
logger.error(f"Error creating config file {config_file}: {str(e)}")
if backup is not None:
logger.info("restoring previous config file")
## workaround, for WinError 183, see above
if sys.platform == "win32" and config_file.is_file():
config_file.unlink()
backup.rename(config_file)
return
logger.info(f"Successfully created new configuration file {config_file}")
# ---------------------------------------------
def new_config_file_contents(
successfully_downloaded: dict,
config_file: Path,
) -> str:
if config_file.exists():
conf = OmegaConf.load(str(config_file.expanduser().resolve()))
else:
conf = OmegaConf.create()
default_selected = None
for model in successfully_downloaded:
# a bit hacky - what we are doing here is seeing whether a checkpoint
# version of the model was previously defined, and whether the current
# model is a diffusers (indicated with a path)
if conf.get(model) and Path(successfully_downloaded[model]).is_dir():
delete_weights(model, conf[model])
stanza = {}
mod = initial_models()[model]
stanza["description"] = mod["description"]
stanza["repo_id"] = mod["repo_id"]
stanza["format"] = mod["format"]
# diffusers don't need width and height (probably .ckpt doesn't either)
# so we no longer require these in INITIAL_MODELS.yaml
if "width" in mod:
stanza["width"] = mod["width"]
if "height" in mod:
stanza["height"] = mod["height"]
if "file" in mod:
stanza["weights"] = os.path.relpath(
successfully_downloaded[model], start=config.root_dir
)
stanza["config"] = os.path.normpath(
os.path.join(sd_configs(), mod["config"])
)
if "vae" in mod:
if "file" in mod["vae"]:
stanza["vae"] = os.path.normpath(
os.path.join(Model_dir, Weights_dir, mod["vae"]["file"])
)
else:
stanza["vae"] = mod["vae"]
if mod.get("default", False):
stanza["default"] = True
default_selected = True
conf[model] = stanza
# if no default model was chosen, then we select the first
# one in the list
if not default_selected:
conf[list(successfully_downloaded.keys())[0]]["default"] = True
return OmegaConf.to_yaml(conf)
# ---------------------------------------------
def delete_weights(model_name: str, conf_stanza: dict):
if not (weights := conf_stanza.get("weights")):
return
if re.match("/VAE/", conf_stanza.get("config")):
return
logger.warning(
f"\nThe checkpoint version of {model_name} is superseded by the diffusers version. Deleting the original file {weights}?"
)
weights = Path(weights)
if not weights.is_absolute():
weights = config.root_dir / weights
try:
weights.unlink()
except OSError as e:
logger.error(str(e))

View File

@ -4,3 +4,4 @@ Initialization file for invokeai.backend.model_management
from .model_manager import ModelManager, ModelInfo
from .model_cache import ModelCache
from .models import BaseModelType, ModelType, SubModelType, ModelVariantType

View File

@ -682,7 +682,7 @@ class ModelManager(object):
for model_key, model_config in list(self.models.items()):
model_name, base_model, model_type = self.parse_key(model_key)
model_path = str(self.globals.root / model_config.path)
model_path = str(self.globals.root_path / model_config.path)
if not os.path.exists(model_path):
model_class = MODEL_CLASSES[base_model][model_type]
if model_class.save_to_config:
@ -703,13 +703,14 @@ class ModelManager(object):
for entry_name in os.listdir(models_dir):
model_path = os.path.join(models_dir, entry_name)
if model_path not in loaded_files: # TODO: check
model_name = Path(model_path).stem
model_path = Path(model_path)
model_name = model_path.name if model_path.is_dir else model_path.stem
model_key = self.create_key(model_name, base_model, model_type)
if model_key in self.models:
raise Exception(f"Model with key {model_key} added twice")
model_config: ModelConfigBase = model_class.probe_config(model_path)
model_config: ModelConfigBase = model_class.probe_config(str(model_path))
self.models[model_key] = model_config
new_models_found = True

View File

@ -15,13 +15,13 @@ import invokeai.backend.util.logging as logger
from .models import BaseModelType, ModelType, ModelVariantType, SchedulerPredictionType, SilenceWarnings
@dataclass
class ModelVariantInfo(object):
class ModelProbeInfo(object):
model_type: ModelType
base_type: BaseModelType
variant_type: ModelVariantType
prediction_type: SchedulerPredictionType
upcast_attention: bool
format: Literal['folder','checkpoint']
format: Literal['diffusers','checkpoint']
image_size: int
class ProbeBase(object):
@ -31,7 +31,7 @@ class ProbeBase(object):
class ModelProbe(object):
PROBES = {
'folder': { },
'diffusers': { },
'checkpoint': { },
}
@ -43,7 +43,7 @@ class ModelProbe(object):
@classmethod
def register_probe(cls,
format: Literal['folder','file'],
format: Literal['diffusers','checkpoint'],
model_type: ModelType,
probe_class: ProbeBase):
cls.PROBES[format][model_type] = probe_class
@ -51,8 +51,8 @@ class ModelProbe(object):
@classmethod
def heuristic_probe(cls,
model: Union[Dict, ModelMixin, Path],
prediction_type_helper: Callable[[Path],BaseModelType]=None,
)->ModelVariantInfo:
prediction_type_helper: Callable[[Path],SchedulerPredictionType]=None,
)->ModelProbeInfo:
if isinstance(model,Path):
return cls.probe(model_path=model,prediction_type_helper=prediction_type_helper)
elif isinstance(model,(dict,ModelMixin,ConfigMixin)):
@ -64,7 +64,7 @@ class ModelProbe(object):
def probe(cls,
model_path: Path,
model: Union[Dict, ModelMixin] = None,
prediction_type_helper: Callable[[Path],BaseModelType] = None)->ModelVariantInfo:
prediction_type_helper: Callable[[Path],SchedulerPredictionType] = None)->ModelProbeInfo:
'''
Probe the model at model_path and return sufficient information about it
to place it somewhere in the models directory hierarchy. If the model is
@ -74,14 +74,14 @@ class ModelProbe(object):
between V2-Base and V2-768 SD models.
'''
if model_path:
format = 'folder' if model_path.is_dir() else 'checkpoint'
format = 'diffusers' if model_path.is_dir() else 'checkpoint'
else:
format = 'folder' if isinstance(model,(ConfigMixin,ModelMixin)) else 'checkpoint'
format = 'diffusers' if isinstance(model,(ConfigMixin,ModelMixin)) else 'checkpoint'
model_info = None
try:
model_type = cls.get_model_type_from_folder(model_path, model) \
if format == 'folder' \
if format == 'diffusers' \
else cls.get_model_type_from_checkpoint(model_path, model)
probe_class = cls.PROBES[format].get(model_type)
if not probe_class:
@ -90,7 +90,7 @@ class ModelProbe(object):
base_type = probe.get_base_type()
variant_type = probe.get_variant_type()
prediction_type = probe.get_scheduler_prediction_type()
model_info = ModelVariantInfo(
model_info = ModelProbeInfo(
model_type = model_type,
base_type = base_type,
variant_type = variant_type,
@ -196,7 +196,7 @@ class CheckpointProbeBase(ProbeBase):
def __init__(self,
checkpoint_path: Path,
checkpoint: dict,
helper: Callable[[Path],BaseModelType] = None
helper: Callable[[Path],SchedulerPredictionType] = None
)->BaseModelType:
self.checkpoint = checkpoint or ModelProbe._scan_and_load_checkpoint(checkpoint_path)
self.checkpoint_path = checkpoint_path
@ -405,11 +405,11 @@ class LoRAFolderProbe(FolderProbeBase):
pass
############## register probe classes ######
ModelProbe.register_probe('folder', ModelType.Pipeline, PipelineFolderProbe)
ModelProbe.register_probe('folder', ModelType.Vae, VaeFolderProbe)
ModelProbe.register_probe('folder', ModelType.Lora, LoRAFolderProbe)
ModelProbe.register_probe('folder', ModelType.TextualInversion, TextualInversionFolderProbe)
ModelProbe.register_probe('folder', ModelType.ControlNet, ControlNetFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.Pipeline, PipelineFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.Vae, VaeFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.Lora, LoRAFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.TextualInversion, TextualInversionFolderProbe)
ModelProbe.register_probe('diffusers', ModelType.ControlNet, ControlNetFolderProbe)
ModelProbe.register_probe('checkpoint', ModelType.Pipeline, PipelineCheckpointProbe)
ModelProbe.register_probe('checkpoint', ModelType.Vae, VaeCheckpointProbe)
ModelProbe.register_probe('checkpoint', ModelType.Lora, LoRACheckpointProbe)

View File

@ -154,7 +154,6 @@ class ModelBase(metaclass=ABCMeta):
def create_config(cls, **kwargs) -> ModelConfigBase:
if "format" not in kwargs:
raise Exception("Field 'format' not found in model config")
configs = cls._get_configs()
return configs[kwargs["format"]](**kwargs)

View File

@ -3,6 +3,7 @@ sd-1/pipeline/stable-diffusion-v1-5:
description: Stable Diffusion version 1.5 diffusers model (4.27 GB)
repo_id: runwayml/stable-diffusion-v1-5
recommended: True
default: True
sd-1/pipeline/stable-diffusion-inpainting:
description: RunwayML SD 1.5 model optimized for inpainting, diffusers version (4.27 GB)
repo_id: runwayml/stable-diffusion-inpainting
@ -27,7 +28,7 @@ sd-1/pipeline/Dungeons-and-Diffusion:
description: Dungeons & Dragons characters (2.13 GB)
repo_id: 0xJustin/Dungeons-and-Diffusion
recommended: False
sd-1/pipeline/dreamlike-photoreal-2.0:
sd-1/pipeline/dreamlike-photoreal-2:
description: A photorealistic model trained on 768 pixel images based on SD 1.5 (2.13 GB)
repo_id: dreamlike-art/dreamlike-photoreal-2.0
recommended: False

View File

@ -0,0 +1,159 @@
model:
base_learning_rate: 5.0e-05
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
parameterization: "v"
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false
conditioning_key: hybrid
scale_factor: 0.18215
monitor: val/loss_simple_ema
finetune_keys: null
use_ema: False
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
use_checkpoint: True
image_size: 32 # unused
in_channels: 9
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
#attn_type: "vanilla-xformers"
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
freeze: True
layer: "penultimate"
data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: null # for concat as in LAION-A
p_unsafe_threshold: 0.1
filter_word_list: "data/filters.yaml"
max_pwatermark: 0.45
batch_size: 8
num_workers: 6
multinode: True
min_size: 512
train:
shards:
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar"
shuffle: 10000
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 512
postprocess:
target: ldm.data.laion.AddMask
params:
mode: "512train-large"
p_drop: 0.25
# NOTE use enough shards to avoid empty validation loops in workers
validation:
shards:
- "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
shuffle: 0
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.CenterCrop
params:
size: 512
postprocess:
target: ldm.data.laion.AddMask
params:
mode: "512train-large"
p_drop: 0.25
lightning:
find_unused_parameters: True
modelcheckpoint:
params:
every_n_train_steps: 5000
callbacks:
metrics_over_trainsteps_checkpoint:
params:
every_n_train_steps: 10000
image_logger:
target: main.ImageLogger
params:
enable_autocast: False
disabled: False
batch_frequency: 1000
max_images: 4
increase_log_steps: False
log_first_step: False
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 4
unconditional_guidance_scale: 5.0
unconditional_guidance_label: [""]
ddim_steps: 50 # todo check these out for depth2img,
ddim_eta: 0.0 # todo check these out for depth2img,
trainer:
benchmark: True
val_check_interval: 5000000
num_sanity_val_steps: 0
accumulate_grad_batches: 1

View File

@ -0,0 +1,158 @@
model:
base_learning_rate: 5.0e-05
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false
conditioning_key: hybrid
scale_factor: 0.18215
monitor: val/loss_simple_ema
finetune_keys: null
use_ema: False
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
use_checkpoint: True
image_size: 32 # unused
in_channels: 9
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
#attn_type: "vanilla-xformers"
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
freeze: True
layer: "penultimate"
data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: null # for concat as in LAION-A
p_unsafe_threshold: 0.1
filter_word_list: "data/filters.yaml"
max_pwatermark: 0.45
batch_size: 8
num_workers: 6
multinode: True
min_size: 512
train:
shards:
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
- "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -" #{00000-94333}.tar"
shuffle: 10000
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 512
postprocess:
target: ldm.data.laion.AddMask
params:
mode: "512train-large"
p_drop: 0.25
# NOTE use enough shards to avoid empty validation loops in workers
validation:
shards:
- "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
shuffle: 0
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.CenterCrop
params:
size: 512
postprocess:
target: ldm.data.laion.AddMask
params:
mode: "512train-large"
p_drop: 0.25
lightning:
find_unused_parameters: True
modelcheckpoint:
params:
every_n_train_steps: 5000
callbacks:
metrics_over_trainsteps_checkpoint:
params:
every_n_train_steps: 10000
image_logger:
target: main.ImageLogger
params:
enable_autocast: False
disabled: False
batch_frequency: 1000
max_images: 4
increase_log_steps: False
log_first_step: False
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 4
unconditional_guidance_scale: 5.0
unconditional_guidance_label: [""]
ddim_steps: 50 # todo check these out for depth2img,
ddim_eta: 0.0 # todo check these out for depth2img,
trainer:
benchmark: True
val_check_interval: 5000000
num_sanity_val_steps: 0
accumulate_grad_batches: 1

View File

@ -11,7 +11,6 @@ The work is actually done in backend code in model_install_backend.py.
import argparse
import curses
import os
import sys
import textwrap
import traceback
@ -20,27 +19,21 @@ from multiprocessing import Process
from multiprocessing.connection import Connection, Pipe
from pathlib import Path
from shutil import get_terminal_size
from typing import List
import logging
import npyscreen
import torch
from npyscreen import widget
from omegaconf import OmegaConf
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.backend.install.model_install_backend import (
Dataset_path, # most of these should go!!
default_config_file,
default_dataset,
install_requested_models,
recommended_datasets,
ModelInstallList,
UserSelections,
ModelInstall
InstallSelections,
ModelInstall,
SchedulerPredictionType,
)
from invokeai.backend.model_management import ModelManager, BaseModelType, ModelType
from invokeai.backend.model_management import ModelManager, ModelType
from invokeai.backend.util import choose_precision, choose_torch_device
from invokeai.frontend.install.widgets import (
CenteredTitleText,
@ -133,7 +126,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
bottom_of_table = self.nextrely
self.nextrely = top_of_table
self.pipeline_models = self.add_model_widgets(
self.pipeline_models = self.add_pipeline_widgets(
model_type=ModelType.Pipeline,
window_width=window_width,
exclude = self.starter_models
@ -210,11 +203,6 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
starters = self.starter_models
starter_model_labels = self.model_labels
recommended_models = set([
x
for x in starters
if models[x].recommended
])
self.installed_models = sorted(
[x for x in starters if models[x].installed]
)
@ -312,16 +300,18 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
return widgets
### Tab for arbitrary diffusers widgets ###
def add_diffusers_widgets(self,
model_type: ModelType=ModelType.Pipeline,
window_width: int=120,
)->dict[str,npyscreen.widget]:
def add_pipeline_widgets(self,
model_type: ModelType=ModelType.Pipeline,
window_width: int=120,
**kwargs,
)->dict[str,npyscreen.widget]:
'''Similar to add_model_widgets() but adds some additional widgets at the bottom
to support the autoload directory'''
widgets = self.add_model_widgets(
model_type = model_type,
window_width = window_width,
install_prompt=f"Additional {model_type.value.title()} models already installed.",
**kwargs,
)
label = "Directory to scan for models to automatically import (<tab> autocompletes):"
@ -428,7 +418,7 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
target = process_and_execute,
kwargs=dict(
opt = app.program_opts,
selections = app.user_selections,
selections = app.install_selections,
conn_out = child_conn,
)
)
@ -436,8 +426,8 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
child_conn.close()
self.subprocess_connection = parent_conn
self.subprocess = p
app.user_selections = UserSelections()
# process_and_execute(app.opt, app.user_selections)
app.install_selections = InstallSelections()
# process_and_execute(app.opt, app.install_selections)
def on_back(self):
self.parentApp.switchFormPrevious()
@ -532,73 +522,24 @@ class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
.autoscan_on_startup: True if invokeai should scan and import at startup time
.import_model_paths: list of URLs, repo_ids and file paths to import
"""
# we're using a global here rather than storing the result in the parentapp
# due to some bug in npyscreen that is causing attributes to be lost
selections = self.parentApp.user_selections
selections = self.parentApp.install_selections
all_models = self.all_models
# Starter models to install/remove
# TO DO - turn these into a dict so we don't have to hard-code the attributes
print(f'installed={[x for x in self.all_models if self.all_models[x].installed]}',file=f)
for section in [self.starter_pipelines, self.pipeline_models,
self.controlnet_models, self.lora_models, self.ti_models]:
# Defined models (in INITIAL_CONFIG.yaml or models.yaml) to add/remove
ui_sections = [self.starter_pipelines, self.pipeline_models,
self.controlnet_models, self.lora_models, self.ti_models]
for section in ui_sections:
selected = set([section['models'][x] for x in section['models_selected'].value])
models_to_install = [x for x in selected if not self.all_models[x].installed]
models_to_remove = [x for x in section['models'] if x not in selected and self.all_models[x].installed]
selections.remove_models.extend(models_to_remove)
selections.install_models.extend(all_models[x].path or all_models[x].repo_id \
for x in models_to_install if all_models[x].path or all_models[x].repo_id)
# "More" models
selections.import_model_paths = self.pipeline_models['download_ids'].value.split()
if diffusers_selected := self.pipeline_models.get('models_selected'):
selections.remove_models.extend([x
for x in diffusers_selected.values
if self.installed_pipeline_models[x]
and diffusers_selected.values.index(x) not in diffusers_selected.value
]
)
# TODO: REFACTOR THIS REPETITIVE CODE
if cn_models_selected := self.controlnet_models.get('models_selected'):
selections.install_cn_models = [cn_models_selected.values[x]
for x in cn_models_selected.value
if not self.installed_cn_models[cn_models_selected.values[x]]
]
selections.remove_cn_models = [x
for x in cn_models_selected.values
if self.installed_cn_models[x]
and cn_models_selected.values.index(x) not in cn_models_selected.value
]
if (additional_cns := self.controlnet_models['download_ids'].value.split()):
valid_cns = [x for x in additional_cns if '/' in x]
selections.install_cn_models.extend(valid_cns)
# same thing, for LoRAs
if loras_selected := self.lora_models.get('models_selected'):
selections.install_lora_models = [loras_selected.values[x]
for x in loras_selected.value
if not self.installed_lora_models[loras_selected.values[x]]
]
selections.remove_lora_models = [x
for x in loras_selected.values
if self.installed_lora_models[x]
and loras_selected.values.index(x) not in loras_selected.value
]
if (additional_loras := self.lora_models['download_ids'].value.split()):
selections.install_lora_models.extend(additional_loras)
# same thing, for TIs
# TODO: refactor
if tis_selected := self.ti_models.get('models_selected'):
selections.install_ti_models = [tis_selected.values[x]
for x in tis_selected.value
if not self.installed_ti_models[tis_selected.values[x]]
]
selections.remove_ti_models = [x
for x in tis_selected.values
if self.installed_ti_models[x]
and tis_selected.values.index(x) not in tis_selected.value
]
if (additional_tis := self.ti_models['download_ids'].value.split()):
selections.install_ti_models.extend(additional_tis)
# models located in the 'download_ids" section
for section in ui_sections:
if downloads := section.get('download_ids'):
selections.install_models.extend(downloads.value.split())
# load directory and whether to scan on startup
selections.scan_directory = self.pipeline_models['autoload_directory'].value
@ -609,7 +550,7 @@ class AddModelApplication(npyscreen.NPSAppManaged):
super().__init__()
self.program_opts = opt
self.user_cancelled = False
self.user_selections = UserSelections()
self.install_selections = InstallSelections()
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
@ -628,21 +569,17 @@ class StderrToMessage():
pass
# --------------------------------------------------------
def ask_user_for_config_file(model_path: Path,
tui_conn: Connection=None
)->Path:
def ask_user_for_prediction_type(model_path: Path,
tui_conn: Connection=None
)->Path:
if tui_conn:
logger.debug('Waiting for user response...')
return _ask_user_for_cf_tui(model_path, tui_conn)
return _ask_user_for_pt_tui(model_path, tui_conn)
else:
return _ask_user_for_cf_cmdline(model_path)
return _ask_user_for_pt_cmdline(model_path)
def _ask_user_for_cf_cmdline(model_path):
choices = [
config.legacy_conf_path / x
for x in ['v2-inference.yaml','v2-inference-v.yaml']
]
choices.extend([None])
def _ask_user_for_pt_cmdline(model_path):
choices = [SchedulerPredictionType.Epsilon, SchedulerPredictionType.VPrediction, None]
print(
f"""
Please select the type of the V2 checkpoint named {model_path.name}:
@ -664,7 +601,7 @@ Please select the type of the V2 checkpoint named {model_path.name}:
return
return choice
def _ask_user_for_cf_tui(model_path: Path, tui_conn: Connection)->Path:
def _ask_user_for_pt_tui(model_path: Path, tui_conn: Connection)->Path:
try:
tui_conn.send_bytes(f'*need v2 config for:{model_path}'.encode('utf-8'))
# note that we don't do any status checking here
@ -672,20 +609,20 @@ def _ask_user_for_cf_tui(model_path: Path, tui_conn: Connection)->Path:
if response is None:
return None
elif response == 'epsilon':
return config.legacy_conf_path / 'v2-inference.yaml'
return SchedulerPredictionType.epsilon
elif response == 'v':
return config.legacy_conf_path / 'v2-inference-v.yaml'
return SchedulerPredictionType.VPrediction
elif response == 'abort':
logger.info('Conversion aborted')
return None
else:
return Path(response)
return response
except:
return None
# --------------------------------------------------------
def process_and_execute(opt: Namespace,
selections: UserSelections,
selections: InstallSelections,
conn_out: Connection=None,
):
# set up so that stderr is sent to conn_out
@ -697,33 +634,13 @@ def process_and_execute(opt: Namespace,
logger.handlers.clear()
logger.addHandler(logging.StreamHandler(translator))
models_to_install = selections.install_models
models_to_remove = selections.remove_models
directory_to_scan = selections.scan_directory
scan_at_startup = selections.autoscan_on_startup
potential_models_to_install = selections.import_model_paths
name_map = selections.model_name_map
install_requested_models(
diffusers = ModelInstallList(models_to_install, [name_map[ModelType.Pipeline][x] for x in models_to_remove]),
controlnet = ModelInstallList(selections.install_cn_models, [name_map[ModelType.ControlNet][x] for x in selections.remove_cn_models]),
lora = ModelInstallList(selections.install_lora_models, [name_map[ModelType.Lora][x] for x in selections.remove_lora_models]),
ti = ModelInstallList(selections.install_ti_models, [name_map[ModelType.TextualInversion][x] for x in selections.remove_ti_models]),
scan_directory=Path(directory_to_scan) if directory_to_scan else None,
external_models=potential_models_to_install,
scan_at_startup=scan_at_startup,
precision="float32"
if opt.full_precision
else choose_precision(torch.device(choose_torch_device())),
config_file_path=Path(opt.config_file) if opt.config_file else config.model_conf_path,
model_config_file_callback = lambda x: ask_user_for_config_file(x,conn_out)
)
installer = ModelInstall(config, prediction_type_helper=lambda x: ask_user_for_prediction_type(x,conn_out))
installer.install(selections)
if conn_out:
conn_out.send_bytes('*done*'.encode('utf-8'))
conn_out.close()
def do_listings(opt)->bool:
"""List installed models of various sorts, and return
True if any were requested."""
@ -754,38 +671,34 @@ def select_and_download_models(opt: Namespace):
if opt.full_precision
else choose_precision(torch.device(choose_torch_device()))
)
config.precision = precision
helper = lambda x: ask_user_for_prediction_type(x)
# if do_listings(opt):
# pass
if do_listings(opt):
pass
# this processes command line additions/removals
elif opt.diffusers or opt.controlnets or opt.textual_inversions or opt.loras:
action = 'remove_models' if opt.delete else 'install_models'
diffusers_args = {'diffusers':ModelInstallList(remove_models=opt.diffusers or [])} \
if opt.delete \
else {'external_models':opt.diffusers or []}
install_requested_models(
**diffusers_args,
controlnet=ModelInstallList(**{action:opt.controlnets or []}),
ti=ModelInstallList(**{action:opt.textual_inversions or []}),
lora=ModelInstallList(**{action:opt.loras or []}),
precision=precision,
model_config_file_callback=lambda x: ask_user_for_config_file(x),
installer = ModelInstall(config, prediction_type_helper=helper)
if opt.add or opt.delete:
selections = InstallSelections(
install_models = opt.add or [],
remove_models = opt.delete or []
)
installer.install(selections)
elif opt.default_only:
install_requested_models(
diffusers=ModelInstallList(install_models=default_dataset()),
precision=precision,
selections = InstallSelections(
install_models = installer.default_model()
)
installer.install(selections)
elif opt.yes_to_all:
install_requested_models(
diffusers=ModelInstallList(install_models=recommended_datasets()),
precision=precision,
selections = InstallSelections(
install_models = installer.recommended_models()
)
installer.install(selections)
# this is where the TUI is called
else:
# needed because the torch library is loaded, even though we don't use it
torch.multiprocessing.set_start_method("spawn")
# currently commented out because it has started generating errors (?)
# torch.multiprocessing.set_start_method("spawn")
# the third argument is needed in the Windows 11 environment in
# order to launch and resize a console window running this program
@ -801,35 +714,20 @@ def select_and_download_models(opt: Namespace):
installApp.main_form.subprocess.terminate()
installApp.main_form.subprocess = None
raise e
process_and_execute(opt, installApp.user_selections)
process_and_execute(opt, installApp.install_selections)
# -------------------------------------
def main():
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
parser.add_argument(
"--diffusers",
"--add",
nargs="*",
help="List of URLs or repo_ids of diffusers to install/delete",
)
parser.add_argument(
"--loras",
nargs="*",
help="List of URLs or repo_ids of LoRA/LyCORIS models to install/delete",
)
parser.add_argument(
"--controlnets",
nargs="*",
help="List of URLs or repo_ids of controlnet models to install/delete",
)
parser.add_argument(
"--textual-inversions",
nargs="*",
help="List of URLs or repo_ids of textual inversion embeddings to install/delete",
help="List of URLs, local paths or repo_ids of models to install",
)
parser.add_argument(
"--delete",
action="store_true",
help="Delete models listed on command line rather than installing them",
nargs="*",
help="List of names of models to idelete",
)
parser.add_argument(
"--full-precision",
@ -849,7 +747,7 @@ def main():
parser.add_argument(
"--default_only",
action="store_true",
help="only install the default model",
help="Only install the default model",
)
parser.add_argument(
"--list-models",

View File

@ -17,8 +17,8 @@ from shutil import get_terminal_size
from curses import BUTTON2_CLICKED,BUTTON3_CLICKED
# minimum size for UIs
MIN_COLS = 120
MIN_LINES = 50
MIN_COLS = 180
MIN_LINES = 55
# -------------------------------------
def set_terminal_size(columns: int, lines: int, launch_command: str=None):
@ -384,7 +384,6 @@ def select_stable_diffusion_config_file(
"An SD v2.x base model (512 pixels; no 'parameterization:' line in its yaml file)",
"An SD v2.x v-predictive model (768 pixels; 'parameterization: \"v\"' line in its yaml file)",
"Skip installation for now and come back later",
"Enter config file path manually",
]
F = ConfirmCancelPopup(
@ -406,35 +405,17 @@ def select_stable_diffusion_config_file(
mlw.values = message
choice = F.add(
SingleSelectWithChanged,
npyscreen.SelectOne,
values = options,
value = [0],
max_height = len(options)+1,
scroll_exit=True,
)
file = F.add(
FileBox,
name='Path to config file',
max_height=3,
hidden=True,
must_exist=True,
scroll_exit=True
)
def toggle_visible(value):
value = value[0]
if value==3:
file.hidden=False
else:
file.hidden=True
F.display()
choice.on_changed = toggle_visible
F.editw = 1
F.edit()
if not F.value:
return None
assert choice.value[0] in range(0,4),'invalid choice'
choices = ['epsilon','v','abort',file.value]
assert choice.value[0] in range(0,3),'invalid choice'
choices = ['epsilon','v','abort']
return choices[choice.value[0]]

View File

@ -26,7 +26,7 @@ from transformers import (
import invokeai.backend.util.logging as logger
from invokeai.backend.model_management import ModelManager
from invokeai.backend.model_management.model_probe import (
ModelProbe, ModelType, BaseModelType, SchedulerPredictionType, ModelVariantInfo
ModelProbe, ModelType, BaseModelType, SchedulerPredictionType, ModelProbeInfo
)
warnings.filterwarnings("ignore")
@ -171,13 +171,13 @@ def migrate_tuning_models(dest: Path):
logger.info(f'Scanning {subdir}')
migrate_models(src, dest)
def write_yaml(model_name: str, path:Path, info:ModelVariantInfo, dest_yaml: io.TextIOBase):
def write_yaml(model_name: str, path:Path, info:ModelProbeInfo, dest_yaml: io.TextIOBase):
name = unique_name(model_name, info)
stanza = {
f'{info.base_type.value}/{info.model_type.value}/{name}': {
'name': model_name,
'path': str(path),
'description': f'diffusers model {model_name}',
'description': f'A {info.base_type.value} {info.model_type.value} model',
'format': 'diffusers',
'image_size': info.image_size,
'base': info.base_type.value,
@ -266,7 +266,7 @@ def migrate_checkpoints(dest_dir: Path, dest_yaml: io.TextIOBase):
{
'name': model_name,
'path': str(weights),
'description': f'checkpoint model {model_name}',
'description': f'{info.base_type.value}-based checkpoint',
'format': 'checkpoint',
'image_size': info.image_size,
'base': info.base_type.value,