Added more preprocessor nodes for:

MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.
This commit is contained in:
user1 2023-05-05 14:12:19 -07:00 committed by Kent Keirsey
parent 754017b59e
commit f3666eda63

View File

@ -1,3 +1,8 @@
# InvokeAI nodes for ControlNet image preprocessors
# initial implementation by Gregg Helt, 2023
# heavily leverages controlnet_aux package: https://github.com/patrickvonplaten/controlnet_aux
import numpy as np
from typing import Literal, Optional, Union, List
from pydantic import BaseModel, Field
@ -20,7 +25,6 @@ from controlnet_aux import (
OpenposeDetector,
PidiNetDetector,
ContentShuffleDetector,
# StyleShuffleDetector,
ZoeDetector)
from .image import ImageOutput, build_image_output, PILInvocationConfig
@ -43,25 +47,26 @@ class ControlField(BaseModel):
class ControlOutput(BaseInvocationOutput):
"""node output for ControlNet info"""
# fmt: off
type: Literal["control_output"] = "control_output"
control: Optional[ControlField] = Field(default=None, description="The control info dict")
raw_processed_image: ImageField = Field(default=None, description="outputs just them image info (which is also included in control output)")
raw_processed_image: ImageField = Field(default=None,
description="outputs just the image info (also included in control output)")
# fmt: on
class PreprocessedControlInvocation(BaseInvocation, PILInvocationConfig):
# This super class handles invoke() call, which in turn calls run_processor(image)
# subclasses override run_processor() instead of implementing their own invoke()
class PreprocessedControlNetInvocation(BaseInvocation, PILInvocationConfig):
"""Base class for invocations that preprocess images for ControlNet"""
# fmt: off
type: Literal["preprocessed_control"] = "preprocessed_control"
# Inputs
image: ImageField = Field(default=None, description="image to process")
control_model: str = Field(default=None, description="control model to use")
control_weight: float = Field(default=0.5, ge=0, le=1, description="control weight")
# TODO: support additional ControlNet parameters (mostly just passthroughs to other nodes with ControlField inputs)
# begin_step_percent: float = Field(default=0, ge=0, le=1,
# description="% of total steps at which controlnet is first applied")
# end_step_percent: float = Field(default=1, ge=0, le=1,
@ -69,8 +74,7 @@ class PreprocessedControlInvocation(BaseInvocation, PILInvocationConfig):
# guess_mode: bool = Field(default=False, description="use guess mode (controlnet ignores prompt)")
# fmt: on
# This super class handles invoke() call, which in turn calls run_processor(image)
# subclasses override run_processor instead of implementing their own invoke()
def run_processor(self, image):
# superclass just passes through image without processing
return image
@ -81,6 +85,8 @@ class PreprocessedControlInvocation(BaseInvocation, PILInvocationConfig):
)
# image type should be PIL.PngImagePlugin.PngImageFile ?
processed_image = self.run_processor(image)
# currently can't see processed image in node UI without a showImage node,
# so for now setting image_type to RESULT instead of INTERMEDIATE so will get saved in gallery
# image_type = ImageType.INTERMEDIATE
image_type = ImageType.RESULT
image_name = context.services.images.create_name(
@ -106,97 +112,209 @@ class PreprocessedControlInvocation(BaseInvocation, PILInvocationConfig):
)
class CannyControlInvocation(PreprocessedControlInvocation, PILInvocationConfig):
class CannyControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig):
"""Canny edge detection for ControlNet"""
# fmt: off
type: Literal["canny_control"] = "canny_control"
# Inputs
type: Literal["cannycontrol"] = "cannycontrol"
# Input
low_threshold: float = Field(default=100, ge=0, description="low threshold of Canny pixel gradient")
high_threshold: float = Field(default=200, ge=0, description="high threshold of Canny pixel gradient")
# fmt: on
def run_processor(self, image):
print("**** running Canny processor ****")
print("image type: ", type(image))
canny_processor = CannyDetector()
processed_image = canny_processor(image, self.low_threshold, self.high_threshold)
print("processed image type: ", type(image))
return processed_image
class HedProcessorInvocation(PreprocessedControlInvocation, PILInvocationConfig):
class HedControlNetInvocation(PreprocessedControlNetInvocation, PILInvocationConfig):
"""Applies HED edge detection to image"""
# fmt: off
type: Literal["hed_control"] = "hed_control"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
safe: bool = Field(default=False, description="whether to use safe mode")
scribble: bool = Field(default=False, description="whether to use scribble mode")
return_pil: bool = Field(default=True, description="whether to return PIL image")
# fmt: on
def run_processor(self, image):
print("**** running HED processor ****")
hed_processor = HEDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = hed_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
safe=self.safe,
return_pil=self.return_pil,
scribble=self.scribble,
)
return processed_image
class LineartProcessorInvocation(PreprocessedControlInvocation, PILInvocationConfig):
class LineartControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig):
"""Applies line art processing to image"""
# fmt: off
type: Literal["lineart_control"] = "lineart_control"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
coarse: bool = Field(default=False, description="whether to use coarse mode")
return_pil: bool = Field(default=True, description="whether to return PIL image")
# fmt: on
def run_processor(self, image):
print("**** running Lineart processor ****")
print("image type: ", type(image))
lineart_processor = LineartDetector.from_pretrained("lllyasviel/Annotators")
processed_image = lineart_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
return_pil=self.return_pil,
coarse=self.coarse)
return processed_image
class OpenposeProcessorInvocation(PreprocessedControlInvocation, PILInvocationConfig):
"""Applies Openpose processing to image"""
class LineartAnimeControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig):
"""Applies line art anime processing to image"""
# fmt: off
type: Literal["lineart_anime_control"] = "lineart_anime_control"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
# fmt: on
def run_processor(self, image):
processor = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
)
return processed_image
class OpenposeControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig):
"""Applies Openpose processing to image"""
# fmt: off
type: Literal["openpose_control"] = "openpose_control"
# Inputs
hand_and_face: bool = Field(default=False, description="whether to use hands and face mode")
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
return_pil: bool = Field(default=True, description="whether to return PIL image")
# fmt: on
def run_processor(self, image):
print("**** running Openpose processor ****")
print("image type: ", type(image))
openpose_processor = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = openpose_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
hand_and_face=self.hand_and_face,
return_pil=self.return_pil)
)
return processed_image
class MidasDepthControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig):
"""Applies Midas depth processing to image"""
# fmt: off
type: Literal["midas_control"] = "midas_control"
# Inputs
a_mult: float = Field(default=2.0, ge=0, description="Midas parameter a = amult * PI")
bg_th: float = Field(default=0.1, ge=0, description="Midas parameter bg_th")
depth_and_normal: bool = Field(default=False, description="whether to use depth and normal mode")
# fmt: on
def run_processor(self, image):
midas_processor = MidasDetector.from_pretrained("lllyasviel/Annotators")
processed_image = midas_processor(image,
a=np.pi * self.a_mult,
bg_th=self.bg_th,
depth_and_normal=self.depth_and_normal)
return processed_image
class NormalbaeControlNetInvocation(PreprocessedControlNetInvocation, PILInvocationConfig):
"""Applies NormalBae processing to image"""
# fmt: off
type: Literal["normalbae_control"] = "normalbae_control"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
# fmt: on
def run_processor(self, image):
normalbae_processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = normalbae_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution)
return processed_image
class MLSDControlNetInvocation(PreprocessedControlNetInvocation, PILInvocationConfig):
"""Applies MLSD processing to image"""
# fmt: off
type: Literal["mlsd_control"] = "mlsd_control"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
thr_v: float = Field(default=0.1, ge=0, description="MLSD parameter thr_v")
thr_d: float = Field(default=0.1, ge=0, description="MLSD parameter thr_d")
# fmt: on
def run_processor(self, image):
mlsd_processor = MLSDdetector.from_pretrained("lllyasviel/Annotators")
processed_image = mlsd_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
thr_v=self.thr_v,
thr_d=self.thr_d)
return processed_image
class PidiControlNetInvocation(PreprocessedControlNetInvocation, PILInvocationConfig):
"""Applies PIDI processing to image"""
# fmt: off
type: Literal["pidi_control"] = "pidi_control"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
safe: bool = Field(default=False, description="whether to use safe mode")
scribble: bool = Field(default=False, description="whether to use scribble mode")
# fmt: on
def run_processor(self, image):
pidi_processor = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
processed_image = pidi_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
safe=self.safe,
scribble=self.scribble)
return processed_image
class ContentShuffleControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig):
"""Applies content shuffle processing to image"""
# fmt: off
type: Literal["content_shuffle_control"] = "content_shuffle_control"
# Inputs
detect_resolution: int = Field(default=512, ge=0, description="pixel resolution for edge detection")
image_resolution: int = Field(default=512, ge=0, description="pixel resolution for output image")
h: Union[int | None] = Field(default=None, ge=0, description="content shuffle h parameter")
w: Union[int | None] = Field(default=None, ge=0, description="content shuffle w parameter")
f: Union[int | None] = Field(default=None, ge=0, description="cont")
# fmt: on
def run_processor(self, image):
content_shuffle_processor = ContentShuffleDetector()
processed_image = content_shuffle_processor(image,
detect_resolution=self.detect_resolution,
image_resolution=self.image_resolution,
h=self.h,
w=self.w,
f=self.f
)
return processed_image
class ZoeDepthControlInvocation(PreprocessedControlNetInvocation, PILInvocationConfig):
"""Applies Zoe depth processing to image"""
# fmt: off
type: Literal["zoe_depth_control"] = "zoe_depth_control"
# fmt: on
def run_processor(self, image):
zoe_depth_processor = ZoeDetector.from_pretrained("lllyasviel/Annotators")
processed_image = zoe_depth_processor(image)
return processed_image