mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
feat: node editor
squashed rebase on main after backendd refactor
This commit is contained in:
@ -4,7 +4,18 @@ from typing import List, Literal, Optional, Union
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from ...backend.model_management import BaseModelType, ModelType, SubModelType
|
||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
|
||||
from .baseinvocation import (
|
||||
BaseInvocation,
|
||||
BaseInvocationOutput,
|
||||
FieldDescriptions,
|
||||
InputField,
|
||||
Input,
|
||||
InvocationContext,
|
||||
OutputField,
|
||||
UITypeHint,
|
||||
tags,
|
||||
title,
|
||||
)
|
||||
|
||||
|
||||
class ModelInfo(BaseModel):
|
||||
@ -39,13 +50,11 @@ class VaeField(BaseModel):
|
||||
class ModelLoaderOutput(BaseInvocationOutput):
|
||||
"""Model loader output"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["model_loader_output"] = "model_loader_output"
|
||||
|
||||
unet: UNetField = Field(default=None, description="UNet submodel")
|
||||
clip: ClipField = Field(default=None, description="Tokenizer and text_encoder submodels")
|
||||
vae: VaeField = Field(default=None, description="Vae submodel")
|
||||
# fmt: on
|
||||
unet: UNetField = OutputField(description=FieldDescriptions.unet, title="UNet")
|
||||
clip: ClipField = OutputField(description=FieldDescriptions.clip, title="CLIP")
|
||||
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
|
||||
|
||||
class MainModelField(BaseModel):
|
||||
@ -63,24 +72,17 @@ class LoRAModelField(BaseModel):
|
||||
base_model: BaseModelType = Field(description="Base model")
|
||||
|
||||
|
||||
@title("Main Model Loader")
|
||||
@tags("model")
|
||||
class MainModelLoaderInvocation(BaseInvocation):
|
||||
"""Loads a main model, outputting its submodels."""
|
||||
|
||||
type: Literal["main_model_loader"] = "main_model_loader"
|
||||
|
||||
model: MainModelField = Field(description="The model to load")
|
||||
# Inputs
|
||||
model: MainModelField = InputField(description=FieldDescriptions.main_model, input=Input.Direct)
|
||||
# TODO: precision?
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"title": "Model Loader",
|
||||
"tags": ["model", "loader"],
|
||||
"type_hints": {"model": "model"},
|
||||
},
|
||||
}
|
||||
|
||||
def invoke(self, context: InvocationContext) -> ModelLoaderOutput:
|
||||
base_model = self.model.base_model
|
||||
model_name = self.model.model_name
|
||||
@ -155,22 +157,6 @@ class MainModelLoaderInvocation(BaseInvocation):
|
||||
loras=[],
|
||||
skipped_layers=0,
|
||||
),
|
||||
clip2=ClipField(
|
||||
tokenizer=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.Tokenizer2,
|
||||
),
|
||||
text_encoder=ModelInfo(
|
||||
model_name=model_name,
|
||||
base_model=base_model,
|
||||
model_type=model_type,
|
||||
submodel=SubModelType.TextEncoder2,
|
||||
),
|
||||
loras=[],
|
||||
skipped_layers=0,
|
||||
),
|
||||
vae=VaeField(
|
||||
vae=ModelInfo(
|
||||
model_name=model_name,
|
||||
@ -188,30 +174,27 @@ class LoraLoaderOutput(BaseInvocationOutput):
|
||||
# fmt: off
|
||||
type: Literal["lora_loader_output"] = "lora_loader_output"
|
||||
|
||||
unet: Optional[UNetField] = Field(default=None, description="UNet submodel")
|
||||
clip: Optional[ClipField] = Field(default=None, description="Tokenizer and text_encoder submodels")
|
||||
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
|
||||
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP")
|
||||
# fmt: on
|
||||
|
||||
|
||||
@title("LoRA Loader")
|
||||
@tags("lora", "model")
|
||||
class LoraLoaderInvocation(BaseInvocation):
|
||||
"""Apply selected lora to unet and text_encoder."""
|
||||
|
||||
type: Literal["lora_loader"] = "lora_loader"
|
||||
|
||||
lora: Union[LoRAModelField, None] = Field(default=None, description="Lora model name")
|
||||
weight: float = Field(default=0.75, description="With what weight to apply lora")
|
||||
|
||||
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
|
||||
clip: Optional[ClipField] = Field(description="Clip model for applying lora")
|
||||
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"title": "Lora Loader",
|
||||
"tags": ["lora", "loader"],
|
||||
"type_hints": {"lora": "lora_model"},
|
||||
},
|
||||
}
|
||||
# Inputs
|
||||
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
|
||||
weight: float = InputField(default=0.75, description=FieldDescriptions.lora_weight)
|
||||
unet: Optional[UNetField] = InputField(
|
||||
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNet"
|
||||
)
|
||||
clip: Optional[ClipField] = InputField(
|
||||
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP"
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> LoraLoaderOutput:
|
||||
if self.lora is None:
|
||||
@ -263,37 +246,35 @@ class LoraLoaderInvocation(BaseInvocation):
|
||||
|
||||
|
||||
class SDXLLoraLoaderOutput(BaseInvocationOutput):
|
||||
"""Model loader output"""
|
||||
"""SDXL LoRA Loader Output"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["sdxl_lora_loader_output"] = "sdxl_lora_loader_output"
|
||||
|
||||
unet: Optional[UNetField] = Field(default=None, description="UNet submodel")
|
||||
clip: Optional[ClipField] = Field(default=None, description="Tokenizer and text_encoder submodels")
|
||||
clip2: Optional[ClipField] = Field(default=None, description="Tokenizer2 and text_encoder2 submodels")
|
||||
unet: Optional[UNetField] = OutputField(default=None, description=FieldDescriptions.unet, title="UNet")
|
||||
clip: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 1")
|
||||
clip2: Optional[ClipField] = OutputField(default=None, description=FieldDescriptions.clip, title="CLIP 2")
|
||||
# fmt: on
|
||||
|
||||
|
||||
@title("SDXL LoRA Loader")
|
||||
@tags("sdxl", "lora", "model")
|
||||
class SDXLLoraLoaderInvocation(BaseInvocation):
|
||||
"""Apply selected lora to unet and text_encoder."""
|
||||
|
||||
type: Literal["sdxl_lora_loader"] = "sdxl_lora_loader"
|
||||
|
||||
lora: Union[LoRAModelField, None] = Field(default=None, description="Lora model name")
|
||||
weight: float = Field(default=0.75, description="With what weight to apply lora")
|
||||
|
||||
unet: Optional[UNetField] = Field(description="UNet model for applying lora")
|
||||
clip: Optional[ClipField] = Field(description="Clip model for applying lora")
|
||||
clip2: Optional[ClipField] = Field(description="Clip2 model for applying lora")
|
||||
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"title": "SDXL Lora Loader",
|
||||
"tags": ["lora", "loader"],
|
||||
"type_hints": {"lora": "lora_model"},
|
||||
},
|
||||
}
|
||||
lora: LoRAModelField = InputField(description=FieldDescriptions.lora_model, input=Input.Direct, title="LoRA")
|
||||
weight: float = Field(default=0.75, description=FieldDescriptions.lora_weight)
|
||||
unet: Optional[UNetField] = Field(
|
||||
default=None, description=FieldDescriptions.unet, input=Input.Connection, title="UNET"
|
||||
)
|
||||
clip: Optional[ClipField] = Field(
|
||||
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 1"
|
||||
)
|
||||
clip2: Optional[ClipField] = Field(
|
||||
default=None, description=FieldDescriptions.clip, input=Input.Connection, title="CLIP 2"
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> SDXLLoraLoaderOutput:
|
||||
if self.lora is None:
|
||||
@ -369,29 +350,23 @@ class VAEModelField(BaseModel):
|
||||
class VaeLoaderOutput(BaseInvocationOutput):
|
||||
"""Model loader output"""
|
||||
|
||||
# fmt: off
|
||||
type: Literal["vae_loader_output"] = "vae_loader_output"
|
||||
|
||||
vae: VaeField = Field(default=None, description="Vae model")
|
||||
# fmt: on
|
||||
# Outputs
|
||||
vae: VaeField = OutputField(description=FieldDescriptions.vae, title="VAE")
|
||||
|
||||
|
||||
@title("VAE Loader")
|
||||
@tags("vae", "model")
|
||||
class VaeLoaderInvocation(BaseInvocation):
|
||||
"""Loads a VAE model, outputting a VaeLoaderOutput"""
|
||||
|
||||
type: Literal["vae_loader"] = "vae_loader"
|
||||
|
||||
vae_model: VAEModelField = Field(description="The VAE to load")
|
||||
|
||||
# Schema customisation
|
||||
class Config(InvocationConfig):
|
||||
schema_extra = {
|
||||
"ui": {
|
||||
"title": "VAE Loader",
|
||||
"tags": ["vae", "loader"],
|
||||
"type_hints": {"vae_model": "vae_model"},
|
||||
},
|
||||
}
|
||||
# Inputs
|
||||
vae_model: VAEModelField = InputField(
|
||||
description=FieldDescriptions.vae_model, input=Input.Direct, ui_type_hint=UITypeHint.VaeModelField, title="VAE"
|
||||
)
|
||||
|
||||
def invoke(self, context: InvocationContext) -> VaeLoaderOutput:
|
||||
base_model = self.vae_model.base_model
|
||||
|
Reference in New Issue
Block a user