mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
lint(ldm.invoke.generator): 🚮 remove unused imports
This commit is contained in:
parent
0f4d71ed63
commit
f79bebed86
@ -2,17 +2,19 @@
|
|||||||
Base class for ldm.invoke.generator.*
|
Base class for ldm.invoke.generator.*
|
||||||
including img2img, txt2img, and inpaint
|
including img2img, txt2img, and inpaint
|
||||||
'''
|
'''
|
||||||
import torch
|
|
||||||
import numpy as np
|
|
||||||
import random
|
|
||||||
import os
|
import os
|
||||||
import os.path as osp
|
import os.path as osp
|
||||||
|
import random
|
||||||
import traceback
|
import traceback
|
||||||
from tqdm import tqdm, trange
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
from PIL import Image, ImageFilter, ImageChops
|
from PIL import Image, ImageFilter, ImageChops
|
||||||
import cv2 as cv
|
import cv2 as cv
|
||||||
from einops import rearrange, repeat
|
from einops import rearrange
|
||||||
from pytorch_lightning import seed_everything
|
from pytorch_lightning import seed_everything
|
||||||
|
from tqdm import trange
|
||||||
|
|
||||||
from ldm.invoke.devices import choose_autocast
|
from ldm.invoke.devices import choose_autocast
|
||||||
from ldm.util import rand_perlin_2d
|
from ldm.util import rand_perlin_2d
|
||||||
|
|
||||||
|
@ -3,15 +3,17 @@ ldm.invoke.generator.embiggen descends from ldm.invoke.generator
|
|||||||
and generates with ldm.invoke.generator.img2img
|
and generates with ldm.invoke.generator.img2img
|
||||||
'''
|
'''
|
||||||
|
|
||||||
import torch
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from tqdm import trange
|
import torch
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
from tqdm import trange
|
||||||
|
|
||||||
|
from ldm.invoke.devices import choose_autocast
|
||||||
from ldm.invoke.generator.base import Generator
|
from ldm.invoke.generator.base import Generator
|
||||||
from ldm.invoke.generator.img2img import Img2Img
|
from ldm.invoke.generator.img2img import Img2Img
|
||||||
from ldm.invoke.devices import choose_autocast
|
|
||||||
from ldm.models.diffusion.ddim import DDIMSampler
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
|
|
||||||
|
|
||||||
class Embiggen(Generator):
|
class Embiggen(Generator):
|
||||||
def __init__(self, model, precision):
|
def __init__(self, model, precision):
|
||||||
super().__init__(model, precision)
|
super().__init__(model, precision)
|
||||||
@ -493,7 +495,7 @@ class Embiggen(Generator):
|
|||||||
# Layer tile onto final image
|
# Layer tile onto final image
|
||||||
outputsuperimage.alpha_composite(intileimage, (left, top))
|
outputsuperimage.alpha_composite(intileimage, (left, top))
|
||||||
else:
|
else:
|
||||||
print(f'Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation.')
|
print('Error: could not find all Embiggen output tiles in memory? Something must have gone wrong with img2img generation.')
|
||||||
|
|
||||||
# after internal loops and patching up return Embiggen image
|
# after internal loops and patching up return Embiggen image
|
||||||
return outputsuperimage
|
return outputsuperimage
|
||||||
|
@ -2,15 +2,15 @@
|
|||||||
ldm.invoke.generator.img2img descends from ldm.invoke.generator
|
ldm.invoke.generator.img2img descends from ldm.invoke.generator
|
||||||
'''
|
'''
|
||||||
|
|
||||||
import torch
|
|
||||||
import numpy as np
|
|
||||||
import PIL
|
import PIL
|
||||||
from torch import Tensor
|
import numpy as np
|
||||||
|
import torch
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
from torch import Tensor
|
||||||
|
|
||||||
from ldm.invoke.devices import choose_autocast
|
from ldm.invoke.devices import choose_autocast
|
||||||
from ldm.invoke.generator.base import Generator
|
from ldm.invoke.generator.base import Generator
|
||||||
from ldm.models.diffusion.ddim import DDIMSampler
|
|
||||||
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
|
||||||
|
|
||||||
class Img2Img(Generator):
|
class Img2Img(Generator):
|
||||||
def __init__(self, model, precision):
|
def __init__(self, model, precision):
|
||||||
|
@ -3,21 +3,21 @@ ldm.invoke.generator.inpaint descends from ldm.invoke.generator
|
|||||||
'''
|
'''
|
||||||
|
|
||||||
import math
|
import math
|
||||||
import torch
|
|
||||||
import torchvision.transforms as T
|
|
||||||
import numpy as np
|
|
||||||
import cv2 as cv
|
|
||||||
import PIL
|
import PIL
|
||||||
|
import cv2 as cv
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
from PIL import Image, ImageFilter, ImageOps, ImageChops
|
from PIL import Image, ImageFilter, ImageOps, ImageChops
|
||||||
from skimage.exposure.histogram_matching import match_histograms
|
from einops import repeat
|
||||||
from einops import rearrange, repeat
|
|
||||||
from ldm.invoke.devices import choose_autocast
|
from ldm.invoke.devices import choose_autocast
|
||||||
|
from ldm.invoke.generator.base import downsampling
|
||||||
from ldm.invoke.generator.img2img import Img2Img
|
from ldm.invoke.generator.img2img import Img2Img
|
||||||
|
from ldm.invoke.globals import Globals
|
||||||
from ldm.models.diffusion.ddim import DDIMSampler
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
from ldm.models.diffusion.ksampler import KSampler
|
from ldm.models.diffusion.ksampler import KSampler
|
||||||
from ldm.invoke.generator.base import downsampling
|
|
||||||
from ldm.util import debug_image
|
from ldm.util import debug_image
|
||||||
from ldm.invoke.globals import Globals
|
|
||||||
|
|
||||||
infill_methods: list[str] = list()
|
infill_methods: list[str] = list()
|
||||||
|
|
||||||
@ -251,7 +251,7 @@ class Inpaint(Img2Img):
|
|||||||
# klms samplers not supported yet, so ignore previous sampler
|
# klms samplers not supported yet, so ignore previous sampler
|
||||||
if isinstance(sampler,KSampler):
|
if isinstance(sampler,KSampler):
|
||||||
print(
|
print(
|
||||||
f">> Using recommended DDIM sampler for inpainting."
|
">> Using recommended DDIM sampler for inpainting."
|
||||||
)
|
)
|
||||||
sampler = DDIMSampler(self.model, device=self.model.device)
|
sampler = DDIMSampler(self.model, device=self.model.device)
|
||||||
|
|
||||||
|
@ -1,14 +1,14 @@
|
|||||||
"""omnibus module to be used with the runwayml 9-channel custom inpainting model"""
|
"""omnibus module to be used with the runwayml 9-channel custom inpainting model"""
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
from PIL import Image, ImageOps
|
||||||
from einops import repeat
|
from einops import repeat
|
||||||
from PIL import Image, ImageOps, ImageChops
|
|
||||||
from ldm.invoke.devices import choose_autocast
|
from ldm.invoke.devices import choose_autocast
|
||||||
from ldm.invoke.generator.base import downsampling
|
|
||||||
from ldm.invoke.generator.img2img import Img2Img
|
from ldm.invoke.generator.img2img import Img2Img
|
||||||
from ldm.invoke.generator.txt2img import Txt2Img
|
from ldm.invoke.generator.txt2img import Txt2Img
|
||||||
|
|
||||||
|
|
||||||
class Omnibus(Img2Img,Txt2Img):
|
class Omnibus(Img2Img,Txt2Img):
|
||||||
def __init__(self, model, precision):
|
def __init__(self, model, precision):
|
||||||
super().__init__(model, precision)
|
super().__init__(model, precision)
|
||||||
@ -58,8 +58,6 @@ class Omnibus(Img2Img,Txt2Img):
|
|||||||
|
|
||||||
self.mask_blur_radius = mask_blur_radius
|
self.mask_blur_radius = mask_blur_radius
|
||||||
|
|
||||||
t_enc = steps
|
|
||||||
|
|
||||||
if init_image is not None and mask_image is not None: # inpainting
|
if init_image is not None and mask_image is not None: # inpainting
|
||||||
masked_image = init_image * (1 - mask_image) # masked image is the image masked by mask - masked regions zero
|
masked_image = init_image * (1 - mask_image) # masked image is the image masked by mask - masked regions zero
|
||||||
|
|
||||||
|
@ -3,9 +3,8 @@ ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
|
|||||||
'''
|
'''
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
|
||||||
from ldm.invoke.generator.base import Generator
|
from ldm.invoke.generator.base import Generator
|
||||||
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
|
||||||
|
|
||||||
|
|
||||||
class Txt2Img(Generator):
|
class Txt2Img(Generator):
|
||||||
|
@ -2,15 +2,16 @@
|
|||||||
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
|
ldm.invoke.generator.txt2img inherits from ldm.invoke.generator
|
||||||
'''
|
'''
|
||||||
|
|
||||||
import torch
|
|
||||||
import numpy as np
|
|
||||||
import math
|
import math
|
||||||
from ldm.invoke.generator.base import Generator
|
|
||||||
from ldm.models.diffusion.ddim import DDIMSampler
|
import torch
|
||||||
from ldm.invoke.generator.omnibus import Omnibus
|
|
||||||
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
|
||||||
|
from ldm.invoke.generator.base import Generator
|
||||||
|
from ldm.invoke.generator.omnibus import Omnibus
|
||||||
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
|
|
||||||
|
|
||||||
class Txt2Img2Img(Generator):
|
class Txt2Img2Img(Generator):
|
||||||
def __init__(self, model, precision):
|
def __init__(self, model, precision):
|
||||||
super().__init__(model, precision)
|
super().__init__(model, precision)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user