mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
fix ruff format check
This commit is contained in:
parent
0719a46372
commit
f95ce1870c
@ -195,7 +195,11 @@ class ModelPatcher:
|
|||||||
def _get_ti_embedding(model_embeddings, ti):
|
def _get_ti_embedding(model_embeddings, ti):
|
||||||
# for SDXL models, select the embedding that matches the text encoder's dimensions
|
# for SDXL models, select the embedding that matches the text encoder's dimensions
|
||||||
if ti.embedding_2 is not None:
|
if ti.embedding_2 is not None:
|
||||||
return ti.embedding_2 if ti.embedding_2.shape[1] == model_embeddings.weight.data[0].shape[0] else ti.embedding
|
return (
|
||||||
|
ti.embedding_2
|
||||||
|
if ti.embedding_2.shape[1] == model_embeddings.weight.data[0].shape[0]
|
||||||
|
else ti.embedding
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
return ti.embedding
|
return ti.embedding
|
||||||
|
|
||||||
@ -212,7 +216,6 @@ class ModelPatcher:
|
|||||||
model_embeddings = text_encoder.get_input_embeddings()
|
model_embeddings = text_encoder.get_input_embeddings()
|
||||||
|
|
||||||
for ti_name, ti in ti_list:
|
for ti_name, ti in ti_list:
|
||||||
|
|
||||||
ti_tokens = []
|
ti_tokens = []
|
||||||
for i in range(ti_embedding.shape[0]):
|
for i in range(ti_embedding.shape[0]):
|
||||||
embedding = ti_embedding[i]
|
embedding = ti_embedding[i]
|
||||||
@ -308,7 +311,7 @@ class TextualInversionModel:
|
|||||||
if len(state_dict["string_to_param"]) > 1:
|
if len(state_dict["string_to_param"]) > 1:
|
||||||
print(
|
print(
|
||||||
f'Warn: Embedding "{file_path.name}" contains multiple tokens, which is not supported. The first',
|
f'Warn: Embedding "{file_path.name}" contains multiple tokens, which is not supported. The first',
|
||||||
" token will be used."
|
" token will be used.",
|
||||||
)
|
)
|
||||||
|
|
||||||
result.embedding = next(iter(state_dict["string_to_param"].values()))
|
result.embedding = next(iter(state_dict["string_to_param"].values()))
|
||||||
@ -332,7 +335,6 @@ class TextualInversionModel:
|
|||||||
if not isinstance(result.embedding, torch.Tensor):
|
if not isinstance(result.embedding, torch.Tensor):
|
||||||
raise ValueError(f"Invalid embeddings file: {file_path.name}")
|
raise ValueError(f"Invalid embeddings file: {file_path.name}")
|
||||||
|
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
@ -520,9 +522,10 @@ class ONNXModelPatcher:
|
|||||||
# modify tokenizer
|
# modify tokenizer
|
||||||
new_tokens_added = 0
|
new_tokens_added = 0
|
||||||
for ti_name, ti in ti_list:
|
for ti_name, ti in ti_list:
|
||||||
|
|
||||||
if ti.embedding_2 is not None:
|
if ti.embedding_2 is not None:
|
||||||
ti_embedding = ti.embedding_2 if ti.embedding_2.shape[1] == orig_embeddings.shape[0] else ti.embedding
|
ti_embedding = (
|
||||||
|
ti.embedding_2 if ti.embedding_2.shape[1] == orig_embeddings.shape[0] else ti.embedding
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
ti_embedding = ti.embedding
|
ti_embedding = ti.embedding
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user