Merge branch 'main' into stalker7779/fix_gradient_mask

This commit is contained in:
blessedcoolant 2024-07-31 06:30:44 +05:30 committed by GitHub
commit fa3c0c81b3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
16 changed files with 564 additions and 132 deletions

View File

@ -55,6 +55,7 @@ RUN --mount=type=cache,target=/root/.cache/pip \
FROM node:20-slim AS web-builder FROM node:20-slim AS web-builder
ENV PNPM_HOME="/pnpm" ENV PNPM_HOME="/pnpm"
ENV PATH="$PNPM_HOME:$PATH" ENV PATH="$PNPM_HOME:$PATH"
RUN corepack use pnpm@8.x
RUN corepack enable RUN corepack enable
WORKDIR /build WORKDIR /build

View File

@ -37,9 +37,9 @@ from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import prepare_control_image from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.ip_adapter.ip_adapter import IPAdapter from invokeai.backend.ip_adapter.ip_adapter import IPAdapter
from invokeai.backend.lora import LoRAModelRaw from invokeai.backend.lora import LoRAModelRaw
from invokeai.backend.model_manager import BaseModelType from invokeai.backend.model_manager import BaseModelType, ModelVariantType
from invokeai.backend.model_patcher import ModelPatcher from invokeai.backend.model_patcher import ModelPatcher
from invokeai.backend.stable_diffusion import PipelineIntermediateState, set_seamless from invokeai.backend.stable_diffusion import PipelineIntermediateState
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext, DenoiseInputs
from invokeai.backend.stable_diffusion.diffusers_pipeline import ( from invokeai.backend.stable_diffusion.diffusers_pipeline import (
ControlNetData, ControlNetData,
@ -60,8 +60,12 @@ from invokeai.backend.stable_diffusion.diffusion_backend import StableDiffusionB
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.controlnet import ControlNetExt from invokeai.backend.stable_diffusion.extensions.controlnet import ControlNetExt
from invokeai.backend.stable_diffusion.extensions.freeu import FreeUExt from invokeai.backend.stable_diffusion.extensions.freeu import FreeUExt
from invokeai.backend.stable_diffusion.extensions.inpaint import InpaintExt
from invokeai.backend.stable_diffusion.extensions.inpaint_model import InpaintModelExt
from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt from invokeai.backend.stable_diffusion.extensions.preview import PreviewExt
from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt from invokeai.backend.stable_diffusion.extensions.rescale_cfg import RescaleCFGExt
from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion.extensions.t2i_adapter import T2IAdapterExt
from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager from invokeai.backend.stable_diffusion.extensions_manager import ExtensionsManager
from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP from invokeai.backend.stable_diffusion.schedulers import SCHEDULER_MAP
from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES from invokeai.backend.stable_diffusion.schedulers.schedulers import SCHEDULER_NAME_VALUES
@ -498,6 +502,33 @@ class DenoiseLatentsInvocation(BaseInvocation):
) )
) )
@staticmethod
def parse_t2i_adapter_field(
exit_stack: ExitStack,
context: InvocationContext,
t2i_adapters: Optional[Union[T2IAdapterField, list[T2IAdapterField]]],
ext_manager: ExtensionsManager,
) -> None:
if t2i_adapters is None:
return
# Handle the possibility that t2i_adapters could be a list or a single T2IAdapterField.
if isinstance(t2i_adapters, T2IAdapterField):
t2i_adapters = [t2i_adapters]
for t2i_adapter_field in t2i_adapters:
ext_manager.add_extension(
T2IAdapterExt(
node_context=context,
model_id=t2i_adapter_field.t2i_adapter_model,
image=context.images.get_pil(t2i_adapter_field.image.image_name),
weight=t2i_adapter_field.weight,
begin_step_percent=t2i_adapter_field.begin_step_percent,
end_step_percent=t2i_adapter_field.end_step_percent,
resize_mode=t2i_adapter_field.resize_mode,
)
)
def prep_ip_adapter_image_prompts( def prep_ip_adapter_image_prompts(
self, self,
context: InvocationContext, context: InvocationContext,
@ -707,7 +738,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
else: else:
masked_latents = torch.where(mask < 0.5, 0.0, latents) masked_latents = torch.where(mask < 0.5, 0.0, latents)
return 1 - mask, masked_latents, self.denoise_mask.gradient return mask, masked_latents, self.denoise_mask.gradient
@staticmethod @staticmethod
def prepare_noise_and_latents( def prepare_noise_and_latents(
@ -765,10 +796,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
dtype = TorchDevice.choose_torch_dtype() dtype = TorchDevice.choose_torch_dtype()
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents) seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
latents = latents.to(device=device, dtype=dtype)
if noise is not None:
noise = noise.to(device=device, dtype=dtype)
_, _, latent_height, latent_width = latents.shape _, _, latent_height, latent_width = latents.shape
conditioning_data = self.get_conditioning_data( conditioning_data = self.get_conditioning_data(
@ -801,21 +828,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
denoising_end=self.denoising_end, denoising_end=self.denoising_end,
) )
denoise_ctx = DenoiseContext(
inputs=DenoiseInputs(
orig_latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise,
seed=seed,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
attention_processor_cls=CustomAttnProcessor2_0,
),
unet=None,
scheduler=scheduler,
)
# get the unet's config so that we can pass the base to sd_step_callback() # get the unet's config so that we can pass the base to sd_step_callback()
unet_config = context.models.get_config(self.unet.unet.key) unet_config = context.models.get_config(self.unet.unet.key)
@ -833,6 +845,40 @@ class DenoiseLatentsInvocation(BaseInvocation):
if self.unet.freeu_config: if self.unet.freeu_config:
ext_manager.add_extension(FreeUExt(self.unet.freeu_config)) ext_manager.add_extension(FreeUExt(self.unet.freeu_config))
### seamless
if self.unet.seamless_axes:
ext_manager.add_extension(SeamlessExt(self.unet.seamless_axes))
### inpaint
mask, masked_latents, is_gradient_mask = self.prep_inpaint_mask(context, latents)
# NOTE: We used to identify inpainting models by inpecting the shape of the loaded UNet model weights. Now we
# use the ModelVariantType config. During testing, there was a report of a user with models that had an
# incorrect ModelVariantType value. Re-installing the model fixed the issue. If this issue turns out to be
# prevalent, we will have to revisit how we initialize the inpainting extensions.
if unet_config.variant == ModelVariantType.Inpaint:
ext_manager.add_extension(InpaintModelExt(mask, masked_latents, is_gradient_mask))
elif mask is not None:
ext_manager.add_extension(InpaintExt(mask, is_gradient_mask))
# Initialize context for modular denoise
latents = latents.to(device=device, dtype=dtype)
if noise is not None:
noise = noise.to(device=device, dtype=dtype)
denoise_ctx = DenoiseContext(
inputs=DenoiseInputs(
orig_latents=latents,
timesteps=timesteps,
init_timestep=init_timestep,
noise=noise,
seed=seed,
scheduler_step_kwargs=scheduler_step_kwargs,
conditioning_data=conditioning_data,
attention_processor_cls=CustomAttnProcessor2_0,
),
unet=None,
scheduler=scheduler,
)
# context for loading additional models # context for loading additional models
with ExitStack() as exit_stack: with ExitStack() as exit_stack:
# later should be smth like: # later should be smth like:
@ -840,6 +886,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
# ext = extension_field.to_extension(exit_stack, context, ext_manager) # ext = extension_field.to_extension(exit_stack, context, ext_manager)
# ext_manager.add_extension(ext) # ext_manager.add_extension(ext)
self.parse_controlnet_field(exit_stack, context, self.control, ext_manager) self.parse_controlnet_field(exit_stack, context, self.control, ext_manager)
self.parse_t2i_adapter_field(exit_stack, context, self.t2i_adapter, ext_manager)
# ext: t2i/ip adapter # ext: t2i/ip adapter
ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx) ext_manager.run_callback(ExtensionCallbackType.SETUP, denoise_ctx)
@ -871,6 +918,10 @@ class DenoiseLatentsInvocation(BaseInvocation):
seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents) seed, noise, latents = self.prepare_noise_and_latents(context, self.noise, self.latents)
mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents) mask, masked_latents, gradient_mask = self.prep_inpaint_mask(context, latents)
# At this point, the mask ranges from 0 (leave unchanged) to 1 (inpaint).
# We invert the mask here for compatibility with the old backend implementation.
if mask is not None:
mask = 1 - mask
# TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets, # TODO(ryand): I have hard-coded `do_classifier_free_guidance=True` to mirror the behaviour of ControlNets,
# below. Investigate whether this is appropriate. # below. Investigate whether this is appropriate.
@ -915,7 +966,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
ExitStack() as exit_stack, ExitStack() as exit_stack,
unet_info.model_on_device() as (model_state_dict, unet), unet_info.model_on_device() as (model_state_dict, unet),
ModelPatcher.apply_freeu(unet, self.unet.freeu_config), ModelPatcher.apply_freeu(unet, self.unet.freeu_config),
set_seamless(unet, self.unet.seamless_axes), # FIXME SeamlessExt.static_patch_model(unet, self.unet.seamless_axes), # FIXME
# Apply the LoRA after unet has been moved to its target device for faster patching. # Apply the LoRA after unet has been moved to its target device for faster patching.
ModelPatcher.apply_lora_unet( ModelPatcher.apply_lora_unet(
unet, unet,

View File

@ -24,7 +24,7 @@ from invokeai.app.invocations.fields import (
from invokeai.app.invocations.model import VAEField from invokeai.app.invocations.model import VAEField
from invokeai.app.invocations.primitives import ImageOutput from invokeai.app.invocations.primitives import ImageOutput
from invokeai.app.services.shared.invocation_context import InvocationContext from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.stable_diffusion import set_seamless from invokeai.backend.stable_diffusion.extensions.seamless import SeamlessExt
from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params from invokeai.backend.stable_diffusion.vae_tiling import patch_vae_tiling_params
from invokeai.backend.util.devices import TorchDevice from invokeai.backend.util.devices import TorchDevice
@ -59,7 +59,7 @@ class LatentsToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
vae_info = context.models.load(self.vae.vae) vae_info = context.models.load(self.vae.vae)
assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny)) assert isinstance(vae_info.model, (AutoencoderKL, AutoencoderTiny))
with set_seamless(vae_info.model, self.vae.seamless_axes), vae_info as vae: with SeamlessExt.static_patch_model(vae_info.model, self.vae.seamless_axes), vae_info as vae:
assert isinstance(vae, (AutoencoderKL, AutoencoderTiny)) assert isinstance(vae, (AutoencoderKL, AutoencoderTiny))
latents = latents.to(vae.device) latents = latents.to(vae.device)
if self.fp32: if self.fp32:

View File

@ -7,11 +7,9 @@ from invokeai.backend.stable_diffusion.diffusers_pipeline import ( # noqa: F401
StableDiffusionGeneratorPipeline, StableDiffusionGeneratorPipeline,
) )
from invokeai.backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent # noqa: F401 from invokeai.backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent # noqa: F401
from invokeai.backend.stable_diffusion.seamless import set_seamless # noqa: F401
__all__ = [ __all__ = [
"PipelineIntermediateState", "PipelineIntermediateState",
"StableDiffusionGeneratorPipeline", "StableDiffusionGeneratorPipeline",
"InvokeAIDiffuserComponent", "InvokeAIDiffuserComponent",
"set_seamless",
] ]

View File

@ -0,0 +1,120 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Optional
import einops
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class InpaintExt(ExtensionBase):
"""An extension for inpainting with non-inpainting models. See `InpaintModelExt` for inpainting with inpainting
models.
"""
def __init__(
self,
mask: torch.Tensor,
is_gradient_mask: bool,
):
"""Initialize InpaintExt.
Args:
mask (torch.Tensor): The inpainting mask. Shape: (1, 1, latent_height, latent_width). Values are
expected to be in the range [0, 1]. A value of 1 means that the corresponding 'pixel' should not be
inpainted.
is_gradient_mask (bool): If True, mask is interpreted as a gradient mask meaning that the mask values range
from 0 to 1. If False, mask is interpreted as binary mask meaning that the mask values are either 0 or
1.
"""
super().__init__()
self._mask = mask
self._is_gradient_mask = is_gradient_mask
# Noise, which used to noisify unmasked part of image
# if noise provided to context, then it will be used
# if no noise provided, then noise will be generated based on seed
self._noise: Optional[torch.Tensor] = None
@staticmethod
def _is_normal_model(unet: UNet2DConditionModel):
"""Checks if the provided UNet belongs to a regular model.
The `in_channels` of a UNet vary depending on model type:
- normal - 4
- depth - 5
- inpaint - 9
"""
return unet.conv_in.in_channels == 4
def _apply_mask(self, ctx: DenoiseContext, latents: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
batch_size = latents.size(0)
mask = einops.repeat(self._mask, "b c h w -> (repeat b) c h w", repeat=batch_size)
if t.dim() == 0:
# some schedulers expect t to be one-dimensional.
# TODO: file diffusers bug about inconsistency?
t = einops.repeat(t, "-> batch", batch=batch_size)
# Noise shouldn't be re-randomized between steps here. The multistep schedulers
# get very confused about what is happening from step to step when we do that.
mask_latents = ctx.scheduler.add_noise(ctx.inputs.orig_latents, self._noise, t)
# TODO: Do we need to also apply scheduler.scale_model_input? Or is add_noise appropriately scaled already?
# mask_latents = self.scheduler.scale_model_input(mask_latents, t)
mask_latents = einops.repeat(mask_latents, "b c h w -> (repeat b) c h w", repeat=batch_size)
if self._is_gradient_mask:
threshold = (t.item()) / ctx.scheduler.config.num_train_timesteps
mask_bool = mask < 1 - threshold
masked_input = torch.where(mask_bool, latents, mask_latents)
else:
masked_input = torch.lerp(latents, mask_latents.to(dtype=latents.dtype), mask.to(dtype=latents.dtype))
return masked_input
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
def init_tensors(self, ctx: DenoiseContext):
if not self._is_normal_model(ctx.unet):
raise ValueError(
"InpaintExt should be used only on normal (non-inpainting) models. This could be caused by an "
"inpainting model that was incorrectly marked as a non-inpainting model. In some cases, this can be "
"fixed by removing and re-adding the model (so that it gets re-probed)."
)
self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
self._noise = ctx.inputs.noise
# 'noise' might be None if the latents have already been noised (e.g. when running the SDXL refiner).
# We still need noise for inpainting, so we generate it from the seed here.
if self._noise is None:
self._noise = torch.randn(
ctx.latents.shape,
dtype=torch.float32,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(ctx.seed),
).to(device=ctx.latents.device, dtype=ctx.latents.dtype)
# Use negative order to make extensions with default order work with patched latents
@callback(ExtensionCallbackType.PRE_STEP, order=-100)
def apply_mask_to_initial_latents(self, ctx: DenoiseContext):
ctx.latents = self._apply_mask(ctx, ctx.latents, ctx.timestep)
# TODO: redo this with preview events rewrite
# Use negative order to make extensions with default order work with patched latents
@callback(ExtensionCallbackType.POST_STEP, order=-100)
def apply_mask_to_step_output(self, ctx: DenoiseContext):
timestep = ctx.scheduler.timesteps[-1]
if hasattr(ctx.step_output, "denoised"):
ctx.step_output.denoised = self._apply_mask(ctx, ctx.step_output.denoised, timestep)
elif hasattr(ctx.step_output, "pred_original_sample"):
ctx.step_output.pred_original_sample = self._apply_mask(ctx, ctx.step_output.pred_original_sample, timestep)
else:
ctx.step_output.pred_original_sample = self._apply_mask(ctx, ctx.step_output.prev_sample, timestep)
# Restore unmasked part after the last step is completed
@callback(ExtensionCallbackType.POST_DENOISE_LOOP)
def restore_unmasked(self, ctx: DenoiseContext):
if self._is_gradient_mask:
ctx.latents = torch.where(self._mask < 1, ctx.latents, ctx.inputs.orig_latents)
else:
ctx.latents = torch.lerp(ctx.latents, ctx.inputs.orig_latents, self._mask)

View File

@ -0,0 +1,88 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Optional
import torch
from diffusers import UNet2DConditionModel
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class InpaintModelExt(ExtensionBase):
"""An extension for inpainting with inpainting models. See `InpaintExt` for inpainting with non-inpainting
models.
"""
def __init__(
self,
mask: Optional[torch.Tensor],
masked_latents: Optional[torch.Tensor],
is_gradient_mask: bool,
):
"""Initialize InpaintModelExt.
Args:
mask (Optional[torch.Tensor]): The inpainting mask. Shape: (1, 1, latent_height, latent_width). Values are
expected to be in the range [0, 1]. A value of 1 means that the corresponding 'pixel' should not be
inpainted.
masked_latents (Optional[torch.Tensor]): Latents of initial image, with masked out by black color inpainted area.
If mask provided, then too should be provided. Shape: (1, 1, latent_height, latent_width)
is_gradient_mask (bool): If True, mask is interpreted as a gradient mask meaning that the mask values range
from 0 to 1. If False, mask is interpreted as binary mask meaning that the mask values are either 0 or
1.
"""
super().__init__()
if mask is not None and masked_latents is None:
raise ValueError("Source image required for inpaint mask when inpaint model used!")
# Inverse mask, because inpaint models treat mask as: 0 - remain same, 1 - inpaint
self._mask = None
if mask is not None:
self._mask = 1 - mask
self._masked_latents = masked_latents
self._is_gradient_mask = is_gradient_mask
@staticmethod
def _is_inpaint_model(unet: UNet2DConditionModel):
"""Checks if the provided UNet belongs to a regular model.
The `in_channels` of a UNet vary depending on model type:
- normal - 4
- depth - 5
- inpaint - 9
"""
return unet.conv_in.in_channels == 9
@callback(ExtensionCallbackType.PRE_DENOISE_LOOP)
def init_tensors(self, ctx: DenoiseContext):
if not self._is_inpaint_model(ctx.unet):
raise ValueError("InpaintModelExt should be used only on inpaint models!")
if self._mask is None:
self._mask = torch.ones_like(ctx.latents[:1, :1])
self._mask = self._mask.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
if self._masked_latents is None:
self._masked_latents = torch.zeros_like(ctx.latents[:1])
self._masked_latents = self._masked_latents.to(device=ctx.latents.device, dtype=ctx.latents.dtype)
# Do last so that other extensions works with normal latents
@callback(ExtensionCallbackType.PRE_UNET, order=1000)
def append_inpaint_layers(self, ctx: DenoiseContext):
batch_size = ctx.unet_kwargs.sample.shape[0]
b_mask = torch.cat([self._mask] * batch_size)
b_masked_latents = torch.cat([self._masked_latents] * batch_size)
ctx.unet_kwargs.sample = torch.cat(
[ctx.unet_kwargs.sample, b_mask, b_masked_latents],
dim=1,
)
# Restore unmasked part as inpaint model can change unmasked part slightly
@callback(ExtensionCallbackType.POST_DENOISE_LOOP)
def restore_unmasked(self, ctx: DenoiseContext):
if self._is_gradient_mask:
ctx.latents = torch.where(self._mask > 0, ctx.latents, ctx.inputs.orig_latents)
else:
ctx.latents = torch.lerp(ctx.inputs.orig_latents, ctx.latents, self._mask)

View File

@ -0,0 +1,71 @@
from __future__ import annotations
from contextlib import contextmanager
from typing import Callable, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
from diffusers import UNet2DConditionModel
from diffusers.models.lora import LoRACompatibleConv
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase
class SeamlessExt(ExtensionBase):
def __init__(
self,
seamless_axes: List[str],
):
super().__init__()
self._seamless_axes = seamless_axes
@contextmanager
def patch_unet(self, unet: UNet2DConditionModel, cached_weights: Optional[Dict[str, torch.Tensor]] = None):
with self.static_patch_model(
model=unet,
seamless_axes=self._seamless_axes,
):
yield
@staticmethod
@contextmanager
def static_patch_model(
model: torch.nn.Module,
seamless_axes: List[str],
):
if not seamless_axes:
yield
return
x_mode = "circular" if "x" in seamless_axes else "constant"
y_mode = "circular" if "y" in seamless_axes else "constant"
# override conv_forward
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
def _conv_forward_asymmetric(
self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None
):
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
return torch.nn.functional.conv2d(
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
)
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
try:
for layer in model.modules():
if not isinstance(layer, torch.nn.Conv2d):
continue
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
layer.lora_layer = lambda *x: 0
original_layers.append((layer, layer._conv_forward))
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
yield
finally:
for layer, orig_conv_forward in original_layers:
layer._conv_forward = orig_conv_forward

View File

@ -0,0 +1,120 @@
from __future__ import annotations
import math
from typing import TYPE_CHECKING, List, Optional, Union
import torch
from diffusers import T2IAdapter
from PIL.Image import Image
from invokeai.app.util.controlnet_utils import prepare_control_image
from invokeai.backend.model_manager import BaseModelType
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import ConditioningMode
from invokeai.backend.stable_diffusion.extension_callback_type import ExtensionCallbackType
from invokeai.backend.stable_diffusion.extensions.base import ExtensionBase, callback
if TYPE_CHECKING:
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.app.util.controlnet_utils import CONTROLNET_RESIZE_VALUES
from invokeai.backend.stable_diffusion.denoise_context import DenoiseContext
class T2IAdapterExt(ExtensionBase):
def __init__(
self,
node_context: InvocationContext,
model_id: ModelIdentifierField,
image: Image,
weight: Union[float, List[float]],
begin_step_percent: float,
end_step_percent: float,
resize_mode: CONTROLNET_RESIZE_VALUES,
):
super().__init__()
self._node_context = node_context
self._model_id = model_id
self._image = image
self._weight = weight
self._resize_mode = resize_mode
self._begin_step_percent = begin_step_percent
self._end_step_percent = end_step_percent
self._adapter_state: Optional[List[torch.Tensor]] = None
# The max_unet_downscale is the maximum amount that the UNet model downscales the latent image internally.
model_config = self._node_context.models.get_config(self._model_id.key)
if model_config.base == BaseModelType.StableDiffusion1:
self._max_unet_downscale = 8
elif model_config.base == BaseModelType.StableDiffusionXL:
self._max_unet_downscale = 4
else:
raise ValueError(f"Unexpected T2I-Adapter base model type: '{model_config.base}'.")
@callback(ExtensionCallbackType.SETUP)
def setup(self, ctx: DenoiseContext):
t2i_model: T2IAdapter
with self._node_context.models.load(self._model_id) as t2i_model:
_, _, latents_height, latents_width = ctx.inputs.orig_latents.shape
self._adapter_state = self._run_model(
model=t2i_model,
image=self._image,
latents_height=latents_height,
latents_width=latents_width,
)
def _run_model(
self,
model: T2IAdapter,
image: Image,
latents_height: int,
latents_width: int,
):
# Resize the T2I-Adapter input image.
# We select the resize dimensions so that after the T2I-Adapter's total_downscale_factor is applied, the
# result will match the latent image's dimensions after max_unet_downscale is applied.
input_height = latents_height // self._max_unet_downscale * model.total_downscale_factor
input_width = latents_width // self._max_unet_downscale * model.total_downscale_factor
# Note: We have hard-coded `do_classifier_free_guidance=False`. This is because we only want to prepare
# a single image. If CFG is enabled, we will duplicate the resultant tensor after applying the
# T2I-Adapter model.
#
# Note: We re-use the `prepare_control_image(...)` from ControlNet for T2I-Adapter, because it has many
# of the same requirements (e.g. preserving binary masks during resize).
t2i_image = prepare_control_image(
image=image,
do_classifier_free_guidance=False,
width=input_width,
height=input_height,
num_channels=model.config["in_channels"],
device=model.device,
dtype=model.dtype,
resize_mode=self._resize_mode,
)
return model(t2i_image)
@callback(ExtensionCallbackType.PRE_UNET)
def pre_unet_step(self, ctx: DenoiseContext):
# skip if model not active in current step
total_steps = len(ctx.inputs.timesteps)
first_step = math.floor(self._begin_step_percent * total_steps)
last_step = math.ceil(self._end_step_percent * total_steps)
if ctx.step_index < first_step or ctx.step_index > last_step:
return
weight = self._weight
if isinstance(weight, list):
weight = weight[ctx.step_index]
adapter_state = self._adapter_state
if ctx.conditioning_mode == ConditioningMode.Both:
adapter_state = [torch.cat([v] * 2) for v in adapter_state]
if ctx.unet_kwargs.down_intrablock_additional_residuals is None:
ctx.unet_kwargs.down_intrablock_additional_residuals = [v * weight for v in adapter_state]
else:
for i, value in enumerate(adapter_state):
ctx.unet_kwargs.down_intrablock_additional_residuals[i] += value * weight

View File

@ -20,10 +20,14 @@ from diffusers import (
) )
from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.schedulers.scheduling_utils import SchedulerMixin
# TODO: add dpmpp_3s/dpmpp_3s_k when fix released
# https://github.com/huggingface/diffusers/issues/9007
SCHEDULER_NAME_VALUES = Literal[ SCHEDULER_NAME_VALUES = Literal[
"ddim", "ddim",
"ddpm", "ddpm",
"deis", "deis",
"deis_k",
"lms", "lms",
"lms_k", "lms_k",
"pndm", "pndm",
@ -33,16 +37,21 @@ SCHEDULER_NAME_VALUES = Literal[
"euler_k", "euler_k",
"euler_a", "euler_a",
"kdpm_2", "kdpm_2",
"kdpm_2_k",
"kdpm_2_a", "kdpm_2_a",
"kdpm_2_a_k",
"dpmpp_2s", "dpmpp_2s",
"dpmpp_2s_k", "dpmpp_2s_k",
"dpmpp_2m", "dpmpp_2m",
"dpmpp_2m_k", "dpmpp_2m_k",
"dpmpp_2m_sde", "dpmpp_2m_sde",
"dpmpp_2m_sde_k", "dpmpp_2m_sde_k",
"dpmpp_3m",
"dpmpp_3m_k",
"dpmpp_sde", "dpmpp_sde",
"dpmpp_sde_k", "dpmpp_sde_k",
"unipc", "unipc",
"unipc_k",
"lcm", "lcm",
"tcd", "tcd",
] ]
@ -50,7 +59,8 @@ SCHEDULER_NAME_VALUES = Literal[
SCHEDULER_MAP: dict[SCHEDULER_NAME_VALUES, tuple[Type[SchedulerMixin], dict[str, Any]]] = { SCHEDULER_MAP: dict[SCHEDULER_NAME_VALUES, tuple[Type[SchedulerMixin], dict[str, Any]]] = {
"ddim": (DDIMScheduler, {}), "ddim": (DDIMScheduler, {}),
"ddpm": (DDPMScheduler, {}), "ddpm": (DDPMScheduler, {}),
"deis": (DEISMultistepScheduler, {}), "deis": (DEISMultistepScheduler, {"use_karras_sigmas": False}),
"deis_k": (DEISMultistepScheduler, {"use_karras_sigmas": True}),
"lms": (LMSDiscreteScheduler, {"use_karras_sigmas": False}), "lms": (LMSDiscreteScheduler, {"use_karras_sigmas": False}),
"lms_k": (LMSDiscreteScheduler, {"use_karras_sigmas": True}), "lms_k": (LMSDiscreteScheduler, {"use_karras_sigmas": True}),
"pndm": (PNDMScheduler, {}), "pndm": (PNDMScheduler, {}),
@ -59,17 +69,28 @@ SCHEDULER_MAP: dict[SCHEDULER_NAME_VALUES, tuple[Type[SchedulerMixin], dict[str,
"euler": (EulerDiscreteScheduler, {"use_karras_sigmas": False}), "euler": (EulerDiscreteScheduler, {"use_karras_sigmas": False}),
"euler_k": (EulerDiscreteScheduler, {"use_karras_sigmas": True}), "euler_k": (EulerDiscreteScheduler, {"use_karras_sigmas": True}),
"euler_a": (EulerAncestralDiscreteScheduler, {}), "euler_a": (EulerAncestralDiscreteScheduler, {}),
"kdpm_2": (KDPM2DiscreteScheduler, {}), "kdpm_2": (KDPM2DiscreteScheduler, {"use_karras_sigmas": False}),
"kdpm_2_a": (KDPM2AncestralDiscreteScheduler, {}), "kdpm_2_k": (KDPM2DiscreteScheduler, {"use_karras_sigmas": True}),
"dpmpp_2s": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False}), "kdpm_2_a": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": False}),
"dpmpp_2s_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True}), "kdpm_2_a_k": (KDPM2AncestralDiscreteScheduler, {"use_karras_sigmas": True}),
"dpmpp_2m": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False}), "dpmpp_2s": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": False, "solver_order": 2}),
"dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True}), "dpmpp_2s_k": (DPMSolverSinglestepScheduler, {"use_karras_sigmas": True, "solver_order": 2}),
"dpmpp_2m_sde": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "algorithm_type": "sde-dpmsolver++"}), "dpmpp_2m": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "solver_order": 2}),
"dpmpp_2m_sde_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "algorithm_type": "sde-dpmsolver++"}), "dpmpp_2m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 2}),
"dpmpp_2m_sde": (
DPMSolverMultistepScheduler,
{"use_karras_sigmas": False, "solver_order": 2, "algorithm_type": "sde-dpmsolver++"},
),
"dpmpp_2m_sde_k": (
DPMSolverMultistepScheduler,
{"use_karras_sigmas": True, "solver_order": 2, "algorithm_type": "sde-dpmsolver++"},
),
"dpmpp_3m": (DPMSolverMultistepScheduler, {"use_karras_sigmas": False, "solver_order": 3}),
"dpmpp_3m_k": (DPMSolverMultistepScheduler, {"use_karras_sigmas": True, "solver_order": 3}),
"dpmpp_sde": (DPMSolverSDEScheduler, {"use_karras_sigmas": False, "noise_sampler_seed": 0}), "dpmpp_sde": (DPMSolverSDEScheduler, {"use_karras_sigmas": False, "noise_sampler_seed": 0}),
"dpmpp_sde_k": (DPMSolverSDEScheduler, {"use_karras_sigmas": True, "noise_sampler_seed": 0}), "dpmpp_sde_k": (DPMSolverSDEScheduler, {"use_karras_sigmas": True, "noise_sampler_seed": 0}),
"unipc": (UniPCMultistepScheduler, {"cpu_only": True}), "unipc": (UniPCMultistepScheduler, {"use_karras_sigmas": False, "cpu_only": True}),
"unipc_k": (UniPCMultistepScheduler, {"use_karras_sigmas": True, "cpu_only": True}),
"lcm": (LCMScheduler, {}), "lcm": (LCMScheduler, {}),
"tcd": (TCDScheduler, {}), "tcd": (TCDScheduler, {}),
} }

View File

@ -1,51 +0,0 @@
from contextlib import contextmanager
from typing import Callable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from diffusers.models.autoencoders.autoencoder_kl import AutoencoderKL
from diffusers.models.autoencoders.autoencoder_tiny import AutoencoderTiny
from diffusers.models.lora import LoRACompatibleConv
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
@contextmanager
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL, AutoencoderTiny], seamless_axes: List[str]):
if not seamless_axes:
yield
return
# override conv_forward
# https://github.com/huggingface/diffusers/issues/556#issuecomment-1993287019
def _conv_forward_asymmetric(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode)
working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode)
return torch.nn.functional.conv2d(
working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups
)
original_layers: List[Tuple[nn.Conv2d, Callable]] = []
try:
x_mode = "circular" if "x" in seamless_axes else "constant"
y_mode = "circular" if "y" in seamless_axes else "constant"
conv_layers: List[torch.nn.Conv2d] = []
for module in model.modules():
if isinstance(module, torch.nn.Conv2d):
conv_layers.append(module)
for layer in conv_layers:
if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None:
layer.lora_layer = lambda *x: 0
original_layers.append((layer, layer._conv_forward))
layer._conv_forward = _conv_forward_asymmetric.__get__(layer, torch.nn.Conv2d)
yield
finally:
for layer, orig_conv_forward in original_layers:
layer._conv_forward = orig_conv_forward

View File

@ -31,7 +31,8 @@
"deleteBoard": "Delete Board", "deleteBoard": "Delete Board",
"deleteBoardAndImages": "Delete Board and Images", "deleteBoardAndImages": "Delete Board and Images",
"deleteBoardOnly": "Delete Board Only", "deleteBoardOnly": "Delete Board Only",
"deletedBoardsCannotbeRestored": "Deleted boards cannot be restored", "deletedBoardsCannotbeRestored": "Deleted boards cannot be restored. Selecting 'Delete Board Only' will move images to an uncategorized state.",
"deletedPrivateBoardsCannotbeRestored": "Deleted boards cannot be restored. Selecting 'Delete Board Only' will move images to a private uncategorized state for the image's creator.",
"hideBoards": "Hide Boards", "hideBoards": "Hide Boards",
"loading": "Loading...", "loading": "Loading...",
"menuItemAutoAdd": "Auto-add to this Board", "menuItemAutoAdd": "Auto-add to this Board",

View File

@ -10,32 +10,32 @@ import {
import { boardsApi } from 'services/api/endpoints/boards'; import { boardsApi } from 'services/api/endpoints/boards';
import { imagesApi } from 'services/api/endpoints/images'; import { imagesApi } from 'services/api/endpoints/images';
// Type inference doesn't work for this if you inline it in the listener for some reason
const matchAnyBoardDeleted = isAnyOf(
imagesApi.endpoints.deleteBoard.matchFulfilled,
imagesApi.endpoints.deleteBoardAndImages.matchFulfilled
);
export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartListening) => { export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartListening) => {
/** /**
* The auto-add board shouldn't be set to an archived board or deleted board. When we archive a board, delete * The auto-add board shouldn't be set to an archived board or deleted board. When we archive a board, delete
* a board, or change a the archived board visibility flag, we may need to reset the auto-add board. * a board, or change a the archived board visibility flag, we may need to reset the auto-add board.
*/ */
startAppListening({ startAppListening({
matcher: isAnyOf( matcher: matchAnyBoardDeleted,
// If a board is deleted, we'll need to reset the auto-add board
imagesApi.endpoints.deleteBoard.matchFulfilled,
imagesApi.endpoints.deleteBoardAndImages.matchFulfilled
),
effect: async (action, { dispatch, getState }) => { effect: async (action, { dispatch, getState }) => {
const state = getState(); const state = getState();
const queryArgs = selectListBoardsQueryArgs(state); const deletedBoardId = action.meta.arg.originalArgs;
const queryResult = boardsApi.endpoints.listAllBoards.select(queryArgs)(state);
const { autoAddBoardId, selectedBoardId } = state.gallery; const { autoAddBoardId, selectedBoardId } = state.gallery;
if (!queryResult.data) { // If the deleted board was currently selected, we should reset the selected board to uncategorized
return; if (deletedBoardId === selectedBoardId) {
}
if (!queryResult.data.find((board) => board.board_id === selectedBoardId)) {
dispatch(boardIdSelected({ boardId: 'none' })); dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images')); dispatch(galleryViewChanged('images'));
} }
if (!queryResult.data.find((board) => board.board_id === autoAddBoardId)) {
// If the deleted board was selected for auto-add, we should reset the auto-add board to uncategorized
if (deletedBoardId === autoAddBoardId) {
dispatch(autoAddBoardIdChanged('none')); dispatch(autoAddBoardIdChanged('none'));
} }
}, },
@ -46,14 +46,8 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
matcher: boardsApi.endpoints.updateBoard.matchFulfilled, matcher: boardsApi.endpoints.updateBoard.matchFulfilled,
effect: async (action, { dispatch, getState }) => { effect: async (action, { dispatch, getState }) => {
const state = getState(); const state = getState();
const queryArgs = selectListBoardsQueryArgs(state);
const queryResult = boardsApi.endpoints.listAllBoards.select(queryArgs)(state);
const { shouldShowArchivedBoards } = state.gallery; const { shouldShowArchivedBoards } = state.gallery;
if (!queryResult.data) {
return;
}
const wasArchived = action.meta.arg.originalArgs.changes.archived === true; const wasArchived = action.meta.arg.originalArgs.changes.archived === true;
if (wasArchived && !shouldShowArchivedBoards) { if (wasArchived && !shouldShowArchivedBoards) {
@ -71,7 +65,7 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
const shouldShowArchivedBoards = action.payload; const shouldShowArchivedBoards = action.payload;
// We only need to take action if we have just hidden archived boards. // We only need to take action if we have just hidden archived boards.
if (!shouldShowArchivedBoards) { if (shouldShowArchivedBoards) {
return; return;
} }
@ -86,14 +80,16 @@ export const addArchivedOrDeletedBoardListener = (startAppListening: AppStartLis
// Handle the case where selected board is archived // Handle the case where selected board is archived
const selectedBoard = queryResult.data.find((b) => b.board_id === selectedBoardId); const selectedBoard = queryResult.data.find((b) => b.board_id === selectedBoardId);
if (selectedBoard && selectedBoard.archived) { if (!selectedBoard || selectedBoard.archived) {
// If we can't find the selected board or it's archived, we should reset the selected board to uncategorized
dispatch(boardIdSelected({ boardId: 'none' })); dispatch(boardIdSelected({ boardId: 'none' }));
dispatch(galleryViewChanged('images')); dispatch(galleryViewChanged('images'));
} }
// Handle the case where auto-add board is archived // Handle the case where auto-add board is archived
const autoAddBoard = queryResult.data.find((b) => b.board_id === autoAddBoardId); const autoAddBoard = queryResult.data.find((b) => b.board_id === autoAddBoardId);
if (autoAddBoard && autoAddBoard.archived) { if (!autoAddBoard || autoAddBoard.archived) {
// If we can't find the auto-add board or it's archived, we should reset the selected board to uncategorized
dispatch(autoAddBoardIdChanged('none')); dispatch(autoAddBoardIdChanged('none'));
} }
}, },

View File

@ -120,7 +120,11 @@ const DeleteBoardModal = (props: Props) => {
bottomMessage={t('boards.bottomMessage')} bottomMessage={t('boards.bottomMessage')}
/> />
)} )}
<Text>{t('boards.deletedBoardsCannotbeRestored')}</Text> <Text>
{boardToDelete.is_private
? t('boards.deletedPrivateBoardsCannotbeRestored')
: t('boards.deletedBoardsCannotbeRestored')}
</Text>
<Text> <Text>
{canRestoreDeletedImagesFromBin ? t('gallery.deleteImageBin') : t('gallery.deleteImagePermanent')} {canRestoreDeletedImagesFromBin ? t('gallery.deleteImageBin') : t('gallery.deleteImagePermanent')}
</Text> </Text>

View File

@ -32,6 +32,7 @@ export const zSchedulerField = z.enum([
'ddpm', 'ddpm',
'dpmpp_2s', 'dpmpp_2s',
'dpmpp_2m', 'dpmpp_2m',
'dpmpp_3m',
'dpmpp_2m_sde', 'dpmpp_2m_sde',
'dpmpp_sde', 'dpmpp_sde',
'heun', 'heun',
@ -40,12 +41,17 @@ export const zSchedulerField = z.enum([
'pndm', 'pndm',
'unipc', 'unipc',
'euler_k', 'euler_k',
'deis_k',
'dpmpp_2s_k', 'dpmpp_2s_k',
'dpmpp_2m_k', 'dpmpp_2m_k',
'dpmpp_3m_k',
'dpmpp_2m_sde_k', 'dpmpp_2m_sde_k',
'dpmpp_sde_k', 'dpmpp_sde_k',
'heun_k', 'heun_k',
'kdpm_2_k',
'kdpm_2_a_k',
'lms_k', 'lms_k',
'unipc_k',
'euler_a', 'euler_a',
'kdpm_2_a', 'kdpm_2_a',
'lcm', 'lcm',

View File

@ -52,28 +52,34 @@ export const CLIP_SKIP_MAP = {
* Mapping of schedulers to human readable name * Mapping of schedulers to human readable name
*/ */
export const SCHEDULER_OPTIONS: ComboboxOption[] = [ export const SCHEDULER_OPTIONS: ComboboxOption[] = [
{ value: 'euler', label: 'Euler' },
{ value: 'deis', label: 'DEIS' },
{ value: 'ddim', label: 'DDIM' }, { value: 'ddim', label: 'DDIM' },
{ value: 'ddpm', label: 'DDPM' }, { value: 'ddpm', label: 'DDPM' },
{ value: 'dpmpp_sde', label: 'DPM++ SDE' }, { value: 'deis', label: 'DEIS' },
{ value: 'deis_k', label: 'DEIS Karras' },
{ value: 'dpmpp_2s', label: 'DPM++ 2S' }, { value: 'dpmpp_2s', label: 'DPM++ 2S' },
{ value: 'dpmpp_2m', label: 'DPM++ 2M' },
{ value: 'dpmpp_2m_sde', label: 'DPM++ 2M SDE' },
{ value: 'heun', label: 'Heun' },
{ value: 'kdpm_2', label: 'KDPM 2' },
{ value: 'lms', label: 'LMS' },
{ value: 'pndm', label: 'PNDM' },
{ value: 'unipc', label: 'UniPC' },
{ value: 'euler_k', label: 'Euler Karras' },
{ value: 'dpmpp_sde_k', label: 'DPM++ SDE Karras' },
{ value: 'dpmpp_2s_k', label: 'DPM++ 2S Karras' }, { value: 'dpmpp_2s_k', label: 'DPM++ 2S Karras' },
{ value: 'dpmpp_2m', label: 'DPM++ 2M' },
{ value: 'dpmpp_2m_k', label: 'DPM++ 2M Karras' }, { value: 'dpmpp_2m_k', label: 'DPM++ 2M Karras' },
{ value: 'dpmpp_2m_sde', label: 'DPM++ 2M SDE' },
{ value: 'dpmpp_2m_sde_k', label: 'DPM++ 2M SDE Karras' }, { value: 'dpmpp_2m_sde_k', label: 'DPM++ 2M SDE Karras' },
{ value: 'heun_k', label: 'Heun Karras' }, { value: 'dpmpp_3m', label: 'DPM++ 3M' },
{ value: 'lms_k', label: 'LMS Karras' }, { value: 'dpmpp_3m_k', label: 'DPM++ 3M Karras' },
{ value: 'dpmpp_sde', label: 'DPM++ SDE' },
{ value: 'dpmpp_sde_k', label: 'DPM++ SDE Karras' },
{ value: 'euler', label: 'Euler' },
{ value: 'euler_k', label: 'Euler Karras' },
{ value: 'euler_a', label: 'Euler Ancestral' }, { value: 'euler_a', label: 'Euler Ancestral' },
{ value: 'heun', label: 'Heun' },
{ value: 'heun_k', label: 'Heun Karras' },
{ value: 'kdpm_2', label: 'KDPM 2' },
{ value: 'kdpm_2_k', label: 'KDPM 2 Karras' },
{ value: 'kdpm_2_a', label: 'KDPM 2 Ancestral' }, { value: 'kdpm_2_a', label: 'KDPM 2 Ancestral' },
{ value: 'kdpm_2_a_k', label: 'KDPM 2 Ancestral Karras' },
{ value: 'lcm', label: 'LCM' }, { value: 'lcm', label: 'LCM' },
{ value: 'lms', label: 'LMS' },
{ value: 'lms_k', label: 'LMS Karras' },
{ value: 'pndm', label: 'PNDM' },
{ value: 'tcd', label: 'TCD' }, { value: 'tcd', label: 'TCD' },
].sort((a, b) => a.label.localeCompare(b.label)); { value: 'unipc', label: 'UniPC' },
{ value: 'unipc_k', label: 'UniPC Karras' },
];

View File

@ -3553,7 +3553,7 @@ export type components = {
* @default euler * @default euler
* @enum {string} * @enum {string}
*/ */
scheduler?: "ddim" | "ddpm" | "deis" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_a" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc" | "lcm" | "tcd"; scheduler?: "ddim" | "ddpm" | "deis" | "deis_k" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_k" | "kdpm_2_a" | "kdpm_2_a_k" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_3m" | "dpmpp_3m_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc" | "unipc_k" | "lcm" | "tcd";
/** /**
* UNet * UNet
* @description UNet (scheduler, LoRAs) * @description UNet (scheduler, LoRAs)
@ -8553,7 +8553,7 @@ export type components = {
* Scheduler * Scheduler
* @description Default scheduler for this model * @description Default scheduler for this model
*/ */
scheduler?: ("ddim" | "ddpm" | "deis" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_a" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc" | "lcm" | "tcd") | null; scheduler?: ("ddim" | "ddpm" | "deis" | "deis_k" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_k" | "kdpm_2_a" | "kdpm_2_a_k" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_3m" | "dpmpp_3m_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc" | "unipc_k" | "lcm" | "tcd") | null;
/** /**
* Steps * Steps
* @description Default number of steps for this model * @description Default number of steps for this model
@ -11467,7 +11467,7 @@ export type components = {
* @default euler * @default euler
* @enum {string} * @enum {string}
*/ */
scheduler?: "ddim" | "ddpm" | "deis" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_a" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc" | "lcm" | "tcd"; scheduler?: "ddim" | "ddpm" | "deis" | "deis_k" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_k" | "kdpm_2_a" | "kdpm_2_a_k" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_3m" | "dpmpp_3m_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc" | "unipc_k" | "lcm" | "tcd";
/** /**
* type * type
* @default scheduler * @default scheduler
@ -11483,7 +11483,7 @@ export type components = {
* @description Scheduler to use during inference * @description Scheduler to use during inference
* @enum {string} * @enum {string}
*/ */
scheduler: "ddim" | "ddpm" | "deis" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_a" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc" | "lcm" | "tcd"; scheduler: "ddim" | "ddpm" | "deis" | "deis_k" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_k" | "kdpm_2_a" | "kdpm_2_a_k" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_3m" | "dpmpp_3m_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc" | "unipc_k" | "lcm" | "tcd";
/** /**
* type * type
* @default scheduler_output * @default scheduler_output
@ -13261,7 +13261,7 @@ export type components = {
* @default euler * @default euler
* @enum {string} * @enum {string}
*/ */
scheduler?: "ddim" | "ddpm" | "deis" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_a" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc" | "lcm" | "tcd"; scheduler?: "ddim" | "ddpm" | "deis" | "deis_k" | "lms" | "lms_k" | "pndm" | "heun" | "heun_k" | "euler" | "euler_k" | "euler_a" | "kdpm_2" | "kdpm_2_k" | "kdpm_2_a" | "kdpm_2_a_k" | "dpmpp_2s" | "dpmpp_2s_k" | "dpmpp_2m" | "dpmpp_2m_k" | "dpmpp_2m_sde" | "dpmpp_2m_sde_k" | "dpmpp_3m" | "dpmpp_3m_k" | "dpmpp_sde" | "dpmpp_sde_k" | "unipc" | "unipc_k" | "lcm" | "tcd";
/** /**
* UNet * UNet
* @description UNet (scheduler, LoRAs) * @description UNet (scheduler, LoRAs)