Remove the redundant init_timestep parameter that was being passed around. It is simply the first element of the timesteps array.

This commit is contained in:
Ryan Dick 2024-06-19 11:56:13 -04:00 committed by Kent Keirsey
parent 7cafd78d6e
commit fa40061eca
4 changed files with 11 additions and 20 deletions

View File

@ -625,7 +625,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
t_start_idx *= scheduler.order t_start_idx *= scheduler.order
t_end_idx *= scheduler.order t_end_idx *= scheduler.order
init_timestep = timesteps[t_start_idx : t_start_idx + 1]
timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx] timesteps = timesteps[t_start_idx : t_start_idx + t_end_idx]
scheduler_step_kwargs: Dict[str, Any] = {} scheduler_step_kwargs: Dict[str, Any] = {}
@ -648,7 +647,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
if isinstance(scheduler, TCDScheduler): if isinstance(scheduler, TCDScheduler):
scheduler_step_kwargs.update({"eta": 1.0}) scheduler_step_kwargs.update({"eta": 1.0})
return timesteps, init_timestep, scheduler_step_kwargs return timesteps, scheduler_step_kwargs
def prep_inpaint_mask( def prep_inpaint_mask(
self, context: InvocationContext, latents: torch.Tensor self, context: InvocationContext, latents: torch.Tensor
@ -814,7 +813,7 @@ class DenoiseLatentsInvocation(BaseInvocation):
dtype=unet.dtype, dtype=unet.dtype,
) )
timesteps, init_timestep, scheduler_step_kwargs = self.init_scheduler( timesteps, scheduler_step_kwargs = self.init_scheduler(
scheduler, scheduler,
device=unet.device, device=unet.device,
steps=self.steps, steps=self.steps,
@ -826,7 +825,6 @@ class DenoiseLatentsInvocation(BaseInvocation):
result_latents = pipeline.latents_from_embeddings( result_latents = pipeline.latents_from_embeddings(
latents=latents, latents=latents,
timesteps=timesteps, timesteps=timesteps,
init_timestep=init_timestep,
noise=noise, noise=noise,
seed=seed, seed=seed,
mask=mask, mask=mask,

View File

@ -234,7 +234,7 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
) )
) )
timesteps, init_timestep, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler( timesteps, scheduler_step_kwargs = DenoiseLatentsInvocation.init_scheduler(
scheduler, scheduler,
device=unet.device, device=unet.device,
steps=self.steps, steps=self.steps,
@ -250,7 +250,6 @@ class TiledMultiDiffusionDenoiseLatents(BaseInvocation):
scheduler_step_kwargs=scheduler_step_kwargs, scheduler_step_kwargs=scheduler_step_kwargs,
noise=noise, noise=noise,
timesteps=timesteps, timesteps=timesteps,
init_timestep=init_timestep,
# TODO(ryand): Add proper callback. # TODO(ryand): Add proper callback.
callback=lambda x: None, callback=lambda x: None,
) )

View File

@ -273,7 +273,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
noise: Optional[torch.Tensor], noise: Optional[torch.Tensor],
seed: int, seed: int,
timesteps: torch.Tensor, timesteps: torch.Tensor,
init_timestep: torch.Tensor,
callback: Callable[[PipelineIntermediateState], None], callback: Callable[[PipelineIntermediateState], None],
control_data: list[ControlNetData] | None = None, control_data: list[ControlNetData] | None = None,
ip_adapter_data: Optional[list[IPAdapterData]] = None, ip_adapter_data: Optional[list[IPAdapterData]] = None,
@ -299,9 +298,6 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
HACK(ryand): seed is only used in a particular case when `noise` is None, but we need to re-generate the HACK(ryand): seed is only used in a particular case when `noise` is None, but we need to re-generate the
same noise used earlier in the pipeline. This should really be handled in a clearer way. same noise used earlier in the pipeline. This should really be handled in a clearer way.
timesteps: The timestep schedule for the denoising process. timesteps: The timestep schedule for the denoising process.
init_timestep: The first timestep in the schedule.
TODO(ryand): I'm pretty sure this should always be the same as timesteps[0:1]. Confirm that that is the
case, and remove this duplicate param.
callback: A callback function that is called to report progress during the denoising process. callback: A callback function that is called to report progress during the denoising process.
control_data: ControlNet data. control_data: ControlNet data.
ip_adapter_data: IP-Adapter data. ip_adapter_data: IP-Adapter data.
@ -316,18 +312,17 @@ class StableDiffusionGeneratorPipeline(StableDiffusionPipeline):
SD UNet model. SD UNet model.
is_gradient_mask: A flag indicating whether `mask` is a gradient mask or not. is_gradient_mask: A flag indicating whether `mask` is a gradient mask or not.
""" """
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle if timesteps.shape[0] == 0:
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
return latents return latents
orig_latents = latents.clone() orig_latents = latents.clone()
batch_size = latents.shape[0] batch_size = latents.shape[0]
batched_init_timestep = init_timestep.expand(batch_size)
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner). # noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
if noise is not None: if noise is not None:
# batched_init_timestep should have shape (batch_size, 1).
batched_init_timestep = timesteps[0:1].expand(batch_size)
# TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with # TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with
# full noise. Investigate the history of why this got commented out. # full noise. Investigate the history of why this got commented out.
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers # latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers

View File

@ -34,19 +34,18 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
scheduler_step_kwargs: dict[str, Any], scheduler_step_kwargs: dict[str, Any],
noise: Optional[torch.Tensor], noise: Optional[torch.Tensor],
timesteps: torch.Tensor, timesteps: torch.Tensor,
init_timestep: torch.Tensor,
callback: Callable[[PipelineIntermediateState], None], callback: Callable[[PipelineIntermediateState], None],
) -> torch.Tensor: ) -> torch.Tensor:
# TODO(ryand): Figure out why this condition is necessary, and document it. My guess is that it's to handle if timesteps.shape[0] == 0:
# cases where densoisings_start and denoising_end are set such that there are no timesteps.
if init_timestep.shape[0] == 0 or timesteps.shape[0] == 0:
return latents return latents
batch_size, _, latent_height, latent_width = latents.shape batch_size, _, latent_height, latent_width = latents.shape
batched_init_timestep = init_timestep.expand(batch_size)
# noise can be None if the latents have already been noised (e.g. when running the SDXL refiner). # noise can be None if the latents have already been noised (e.g. when running the SDXL refiner).
if noise is not None: if noise is not None:
# batched_init_timestep should have shape (batch_size, 1).
batched_init_timestep = timesteps[0:1].expand(batch_size)
# TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with # TODO(ryand): I'm pretty sure we should be applying init_noise_sigma in cases where we are starting with
# full noise. Investigate the history of why this got commented out. # full noise. Investigate the history of why this got commented out.
# latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers # latents = noise * self.scheduler.init_noise_sigma # it's like in t2l according to diffusers