mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
merge with main
This commit is contained in:
commit
fa6a580452
15
.github/workflows/mkdocs-material.yml
vendored
15
.github/workflows/mkdocs-material.yml
vendored
@ -2,8 +2,7 @@ name: mkdocs-material
|
|||||||
on:
|
on:
|
||||||
push:
|
push:
|
||||||
branches:
|
branches:
|
||||||
- 'main'
|
- 'refs/heads/v2.3'
|
||||||
- 'development'
|
|
||||||
|
|
||||||
permissions:
|
permissions:
|
||||||
contents: write
|
contents: write
|
||||||
@ -12,6 +11,10 @@ jobs:
|
|||||||
mkdocs-material:
|
mkdocs-material:
|
||||||
if: github.event.pull_request.draft == false
|
if: github.event.pull_request.draft == false
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
|
env:
|
||||||
|
REPO_URL: '${{ github.server_url }}/${{ github.repository }}'
|
||||||
|
REPO_NAME: '${{ github.repository }}'
|
||||||
|
SITE_URL: 'https://${{ github.repository_owner }}.github.io/InvokeAI'
|
||||||
steps:
|
steps:
|
||||||
- name: checkout sources
|
- name: checkout sources
|
||||||
uses: actions/checkout@v3
|
uses: actions/checkout@v3
|
||||||
@ -22,11 +25,15 @@ jobs:
|
|||||||
uses: actions/setup-python@v4
|
uses: actions/setup-python@v4
|
||||||
with:
|
with:
|
||||||
python-version: '3.10'
|
python-version: '3.10'
|
||||||
|
cache: pip
|
||||||
|
cache-dependency-path: pyproject.toml
|
||||||
|
|
||||||
- name: install requirements
|
- name: install requirements
|
||||||
|
env:
|
||||||
|
PIP_USE_PEP517: 1
|
||||||
run: |
|
run: |
|
||||||
python -m \
|
python -m \
|
||||||
pip install -r docs/requirements-mkdocs.txt
|
pip install ".[docs]"
|
||||||
|
|
||||||
- name: confirm buildability
|
- name: confirm buildability
|
||||||
run: |
|
run: |
|
||||||
@ -36,7 +43,7 @@ jobs:
|
|||||||
--verbose
|
--verbose
|
||||||
|
|
||||||
- name: deploy to gh-pages
|
- name: deploy to gh-pages
|
||||||
if: ${{ github.ref == 'refs/heads/main' }}
|
if: ${{ github.ref == 'refs/heads/v2.3' }}
|
||||||
run: |
|
run: |
|
||||||
python -m \
|
python -m \
|
||||||
mkdocs gh-deploy \
|
mkdocs gh-deploy \
|
||||||
|
@ -89,7 +89,7 @@ experimental versions later.
|
|||||||
sudo apt update
|
sudo apt update
|
||||||
sudo apt install -y software-properties-common
|
sudo apt install -y software-properties-common
|
||||||
sudo add-apt-repository -y ppa:deadsnakes/ppa
|
sudo add-apt-repository -y ppa:deadsnakes/ppa
|
||||||
sudo apt install python3.10 python3-pip python3.10-venv
|
sudo apt install -y python3.10 python3-pip python3.10-venv
|
||||||
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3
|
sudo update-alternatives --install /usr/local/bin/python python /usr/bin/python3.10 3
|
||||||
```
|
```
|
||||||
|
|
||||||
|
245
invokeai/app/invocations/compel.py
Normal file
245
invokeai/app/invocations/compel.py
Normal file
@ -0,0 +1,245 @@
|
|||||||
|
from typing import Literal, Optional, Union
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
from invokeai.app.invocations.util.choose_model import choose_model
|
||||||
|
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||||
|
|
||||||
|
from ...backend.util.devices import choose_torch_device, torch_dtype
|
||||||
|
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
|
||||||
|
from ...backend.stable_diffusion.textual_inversion_manager import TextualInversionManager
|
||||||
|
|
||||||
|
from compel import Compel
|
||||||
|
from compel.prompt_parser import (
|
||||||
|
Blend,
|
||||||
|
CrossAttentionControlSubstitute,
|
||||||
|
FlattenedPrompt,
|
||||||
|
Fragment,
|
||||||
|
)
|
||||||
|
|
||||||
|
from invokeai.backend.globals import Globals
|
||||||
|
|
||||||
|
|
||||||
|
class ConditioningField(BaseModel):
|
||||||
|
conditioning_name: Optional[str] = Field(default=None, description="The name of conditioning data")
|
||||||
|
class Config:
|
||||||
|
schema_extra = {"required": ["conditioning_name"]}
|
||||||
|
|
||||||
|
|
||||||
|
class CompelOutput(BaseInvocationOutput):
|
||||||
|
"""Compel parser output"""
|
||||||
|
|
||||||
|
#fmt: off
|
||||||
|
type: Literal["compel_output"] = "compel_output"
|
||||||
|
|
||||||
|
conditioning: ConditioningField = Field(default=None, description="Conditioning")
|
||||||
|
#fmt: on
|
||||||
|
|
||||||
|
|
||||||
|
class CompelInvocation(BaseInvocation):
|
||||||
|
"""Parse prompt using compel package to conditioning."""
|
||||||
|
|
||||||
|
type: Literal["compel"] = "compel"
|
||||||
|
|
||||||
|
prompt: str = Field(default="", description="Prompt")
|
||||||
|
model: str = Field(default="", description="Model to use")
|
||||||
|
|
||||||
|
# Schema customisation
|
||||||
|
class Config(InvocationConfig):
|
||||||
|
schema_extra = {
|
||||||
|
"ui": {
|
||||||
|
"title": "Prompt (Compel)",
|
||||||
|
"tags": ["prompt", "compel"],
|
||||||
|
"type_hints": {
|
||||||
|
"model": "model"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
||||||
|
|
||||||
|
# TODO: load without model
|
||||||
|
model = choose_model(context.services.model_manager, self.model)
|
||||||
|
pipeline = model["model"]
|
||||||
|
tokenizer = pipeline.tokenizer
|
||||||
|
text_encoder = pipeline.text_encoder
|
||||||
|
|
||||||
|
# TODO: global? input?
|
||||||
|
#use_full_precision = precision == "float32" or precision == "autocast"
|
||||||
|
#use_full_precision = False
|
||||||
|
|
||||||
|
# TODO: redo TI when separate model loding implemented
|
||||||
|
#textual_inversion_manager = TextualInversionManager(
|
||||||
|
# tokenizer=tokenizer,
|
||||||
|
# text_encoder=text_encoder,
|
||||||
|
# full_precision=use_full_precision,
|
||||||
|
#)
|
||||||
|
|
||||||
|
def load_huggingface_concepts(concepts: list[str]):
|
||||||
|
pipeline.textual_inversion_manager.load_huggingface_concepts(concepts)
|
||||||
|
|
||||||
|
# apply the concepts library to the prompt
|
||||||
|
prompt_str = pipeline.textual_inversion_manager.hf_concepts_library.replace_concepts_with_triggers(
|
||||||
|
self.prompt,
|
||||||
|
lambda concepts: load_huggingface_concepts(concepts),
|
||||||
|
pipeline.textual_inversion_manager.get_all_trigger_strings(),
|
||||||
|
)
|
||||||
|
|
||||||
|
# lazy-load any deferred textual inversions.
|
||||||
|
# this might take a couple of seconds the first time a textual inversion is used.
|
||||||
|
pipeline.textual_inversion_manager.create_deferred_token_ids_for_any_trigger_terms(
|
||||||
|
prompt_str
|
||||||
|
)
|
||||||
|
|
||||||
|
compel = Compel(
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
text_encoder=text_encoder,
|
||||||
|
textual_inversion_manager=pipeline.textual_inversion_manager,
|
||||||
|
dtype_for_device_getter=torch_dtype,
|
||||||
|
truncate_long_prompts=True, # TODO:
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO: support legacy blend?
|
||||||
|
|
||||||
|
prompt: Union[FlattenedPrompt, Blend] = Compel.parse_prompt_string(prompt_str)
|
||||||
|
|
||||||
|
if getattr(Globals, "log_tokenization", False):
|
||||||
|
log_tokenization_for_prompt_object(prompt, tokenizer)
|
||||||
|
|
||||||
|
c, options = compel.build_conditioning_tensor_for_prompt_object(prompt)
|
||||||
|
|
||||||
|
# TODO: long prompt support
|
||||||
|
#if not self.truncate_long_prompts:
|
||||||
|
# [c, uc] = compel.pad_conditioning_tensors_to_same_length([c, uc])
|
||||||
|
|
||||||
|
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
|
||||||
|
tokens_count_including_eos_bos=get_max_token_count(tokenizer, prompt),
|
||||||
|
cross_attention_control_args=options.get("cross_attention_control", None),
|
||||||
|
)
|
||||||
|
|
||||||
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
||||||
|
|
||||||
|
# TODO: hacky but works ;D maybe rename latents somehow?
|
||||||
|
context.services.latents.set(conditioning_name, (c, ec))
|
||||||
|
|
||||||
|
return CompelOutput(
|
||||||
|
conditioning=ConditioningField(
|
||||||
|
conditioning_name=conditioning_name,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_max_token_count(
|
||||||
|
tokenizer, prompt: Union[FlattenedPrompt, Blend], truncate_if_too_long=False
|
||||||
|
) -> int:
|
||||||
|
if type(prompt) is Blend:
|
||||||
|
blend: Blend = prompt
|
||||||
|
return max(
|
||||||
|
[
|
||||||
|
get_max_token_count(tokenizer, c, truncate_if_too_long)
|
||||||
|
for c in blend.prompts
|
||||||
|
]
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
return len(
|
||||||
|
get_tokens_for_prompt_object(tokenizer, prompt, truncate_if_too_long)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_tokens_for_prompt_object(
|
||||||
|
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
|
||||||
|
) -> [str]:
|
||||||
|
if type(parsed_prompt) is Blend:
|
||||||
|
raise ValueError(
|
||||||
|
"Blend is not supported here - you need to get tokens for each of its .children"
|
||||||
|
)
|
||||||
|
|
||||||
|
text_fragments = [
|
||||||
|
x.text
|
||||||
|
if type(x) is Fragment
|
||||||
|
else (
|
||||||
|
" ".join([f.text for f in x.original])
|
||||||
|
if type(x) is CrossAttentionControlSubstitute
|
||||||
|
else str(x)
|
||||||
|
)
|
||||||
|
for x in parsed_prompt.children
|
||||||
|
]
|
||||||
|
text = " ".join(text_fragments)
|
||||||
|
tokens = tokenizer.tokenize(text)
|
||||||
|
if truncate_if_too_long:
|
||||||
|
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
|
||||||
|
tokens = tokens[0:max_tokens_length]
|
||||||
|
return tokens
|
||||||
|
|
||||||
|
|
||||||
|
def log_tokenization_for_prompt_object(
|
||||||
|
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
|
||||||
|
):
|
||||||
|
display_label_prefix = display_label_prefix or ""
|
||||||
|
if type(p) is Blend:
|
||||||
|
blend: Blend = p
|
||||||
|
for i, c in enumerate(blend.prompts):
|
||||||
|
log_tokenization_for_prompt_object(
|
||||||
|
c,
|
||||||
|
tokenizer,
|
||||||
|
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
|
||||||
|
)
|
||||||
|
elif type(p) is FlattenedPrompt:
|
||||||
|
flattened_prompt: FlattenedPrompt = p
|
||||||
|
if flattened_prompt.wants_cross_attention_control:
|
||||||
|
original_fragments = []
|
||||||
|
edited_fragments = []
|
||||||
|
for f in flattened_prompt.children:
|
||||||
|
if type(f) is CrossAttentionControlSubstitute:
|
||||||
|
original_fragments += f.original
|
||||||
|
edited_fragments += f.edited
|
||||||
|
else:
|
||||||
|
original_fragments.append(f)
|
||||||
|
edited_fragments.append(f)
|
||||||
|
|
||||||
|
original_text = " ".join([x.text for x in original_fragments])
|
||||||
|
log_tokenization_for_text(
|
||||||
|
original_text,
|
||||||
|
tokenizer,
|
||||||
|
display_label=f"{display_label_prefix}(.swap originals)",
|
||||||
|
)
|
||||||
|
edited_text = " ".join([x.text for x in edited_fragments])
|
||||||
|
log_tokenization_for_text(
|
||||||
|
edited_text,
|
||||||
|
tokenizer,
|
||||||
|
display_label=f"{display_label_prefix}(.swap replacements)",
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
text = " ".join([x.text for x in flattened_prompt.children])
|
||||||
|
log_tokenization_for_text(
|
||||||
|
text, tokenizer, display_label=display_label_prefix
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def log_tokenization_for_text(text, tokenizer, display_label=None, truncate_if_too_long=False):
|
||||||
|
"""shows how the prompt is tokenized
|
||||||
|
# usually tokens have '</w>' to indicate end-of-word,
|
||||||
|
# but for readability it has been replaced with ' '
|
||||||
|
"""
|
||||||
|
tokens = tokenizer.tokenize(text)
|
||||||
|
tokenized = ""
|
||||||
|
discarded = ""
|
||||||
|
usedTokens = 0
|
||||||
|
totalTokens = len(tokens)
|
||||||
|
|
||||||
|
for i in range(0, totalTokens):
|
||||||
|
token = tokens[i].replace("</w>", " ")
|
||||||
|
# alternate color
|
||||||
|
s = (usedTokens % 6) + 1
|
||||||
|
if truncate_if_too_long and i >= tokenizer.model_max_length:
|
||||||
|
discarded = discarded + f"\x1b[0;3{s};40m{token}"
|
||||||
|
else:
|
||||||
|
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
|
||||||
|
usedTokens += 1
|
||||||
|
|
||||||
|
if usedTokens > 0:
|
||||||
|
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
|
||||||
|
print(f"{tokenized}\x1b[0m")
|
||||||
|
|
||||||
|
if discarded != "":
|
||||||
|
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
|
||||||
|
print(f"{discarded}\x1b[0m")
|
@ -13,13 +13,13 @@ from ...backend.model_management.model_manager import ModelManager
|
|||||||
from ...backend.util.devices import choose_torch_device, torch_dtype
|
from ...backend.util.devices import choose_torch_device, torch_dtype
|
||||||
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
|
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
|
||||||
from ...backend.image_util.seamless import configure_model_padding
|
from ...backend.image_util.seamless import configure_model_padding
|
||||||
from ...backend.prompting.conditioning import get_uc_and_c_and_ec
|
|
||||||
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
|
from ...backend.stable_diffusion.diffusers_pipeline import ConditioningData, StableDiffusionGeneratorPipeline
|
||||||
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationContext, InvocationConfig
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from ..services.image_storage import ImageType
|
from ..services.image_storage import ImageType
|
||||||
from .baseinvocation import BaseInvocation, InvocationContext
|
from .baseinvocation import BaseInvocation, InvocationContext
|
||||||
from .image import ImageField, ImageOutput, build_image_output
|
from .image import ImageField, ImageOutput, build_image_output
|
||||||
|
from .compel import ConditioningField
|
||||||
from ...backend.stable_diffusion import PipelineIntermediateState
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
||||||
from diffusers.schedulers import SchedulerMixin as Scheduler
|
from diffusers.schedulers import SchedulerMixin as Scheduler
|
||||||
import diffusers
|
import diffusers
|
||||||
@ -138,14 +138,14 @@ class NoiseInvocation(BaseInvocation):
|
|||||||
|
|
||||||
# Text to image
|
# Text to image
|
||||||
class TextToLatentsInvocation(BaseInvocation):
|
class TextToLatentsInvocation(BaseInvocation):
|
||||||
"""Generates latents from a prompt."""
|
"""Generates latents from conditionings."""
|
||||||
|
|
||||||
type: Literal["t2l"] = "t2l"
|
type: Literal["t2l"] = "t2l"
|
||||||
|
|
||||||
# Inputs
|
# Inputs
|
||||||
# TODO: consider making prompt optional to enable providing prompt through a link
|
|
||||||
# fmt: off
|
# fmt: off
|
||||||
prompt: Optional[str] = Field(description="The prompt to generate an image from")
|
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
|
||||||
|
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
|
||||||
noise: Optional[LatentsField] = Field(description="The noise to use")
|
noise: Optional[LatentsField] = Field(description="The noise to use")
|
||||||
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
||||||
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
||||||
@ -204,8 +204,10 @@ class TextToLatentsInvocation(BaseInvocation):
|
|||||||
return model_ctx
|
return model_ctx
|
||||||
|
|
||||||
|
|
||||||
def get_conditioning_data(self, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
|
def get_conditioning_data(self, context: InvocationContext, model: StableDiffusionGeneratorPipeline) -> ConditioningData:
|
||||||
uc, c, extra_conditioning_info = get_uc_and_c_and_ec(self.prompt, model=model)
|
c, extra_conditioning_info = context.services.latents.get(self.positive_conditioning.conditioning_name)
|
||||||
|
uc, _ = context.services.latents.get(self.negative_conditioning.conditioning_name)
|
||||||
|
|
||||||
conditioning_data = ConditioningData(
|
conditioning_data = ConditioningData(
|
||||||
uc,
|
uc,
|
||||||
c,
|
c,
|
||||||
@ -231,8 +233,8 @@ class TextToLatentsInvocation(BaseInvocation):
|
|||||||
def step_callback(state: PipelineIntermediateState):
|
def step_callback(state: PipelineIntermediateState):
|
||||||
self.dispatch_progress(context, source_node_id, state)
|
self.dispatch_progress(context, source_node_id, state)
|
||||||
|
|
||||||
with self.get_model(context.services.model_manager) as model:
|
model = self.get_model(context.services.model_manager)
|
||||||
conditioning_data = self.get_conditioning_data(model)
|
conditioning_data = self.get_conditioning_data(context, model)
|
||||||
|
|
||||||
# TODO: Verify the noise is the right size
|
# TODO: Verify the noise is the right size
|
||||||
result_latents, result_attention_map_saver = model.latents_from_embeddings(
|
result_latents, result_attention_map_saver = model.latents_from_embeddings(
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
|
from ..invocations.latent import LatentsToImageInvocation, NoiseInvocation, TextToLatentsInvocation
|
||||||
|
from ..invocations.compel import CompelInvocation
|
||||||
from ..invocations.params import ParamIntInvocation
|
from ..invocations.params import ParamIntInvocation
|
||||||
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
|
from .graph import Edge, EdgeConnection, ExposedNodeInput, ExposedNodeOutput, Graph, LibraryGraph
|
||||||
from .item_storage import ItemStorageABC
|
from .item_storage import ItemStorageABC
|
||||||
@ -16,24 +17,32 @@ def create_text_to_image() -> LibraryGraph:
|
|||||||
nodes={
|
nodes={
|
||||||
'width': ParamIntInvocation(id='width', a=512),
|
'width': ParamIntInvocation(id='width', a=512),
|
||||||
'height': ParamIntInvocation(id='height', a=512),
|
'height': ParamIntInvocation(id='height', a=512),
|
||||||
|
'seed': ParamIntInvocation(id='seed', a=-1),
|
||||||
'3': NoiseInvocation(id='3'),
|
'3': NoiseInvocation(id='3'),
|
||||||
'4': TextToLatentsInvocation(id='4'),
|
'4': CompelInvocation(id='4'),
|
||||||
'5': LatentsToImageInvocation(id='5')
|
'5': CompelInvocation(id='5'),
|
||||||
|
'6': TextToLatentsInvocation(id='6'),
|
||||||
|
'7': LatentsToImageInvocation(id='7'),
|
||||||
},
|
},
|
||||||
edges=[
|
edges=[
|
||||||
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
|
Edge(source=EdgeConnection(node_id='width', field='a'), destination=EdgeConnection(node_id='3', field='width')),
|
||||||
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
|
Edge(source=EdgeConnection(node_id='height', field='a'), destination=EdgeConnection(node_id='3', field='height')),
|
||||||
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='4', field='noise')),
|
Edge(source=EdgeConnection(node_id='seed', field='a'), destination=EdgeConnection(node_id='3', field='seed')),
|
||||||
Edge(source=EdgeConnection(node_id='4', field='latents'), destination=EdgeConnection(node_id='5', field='latents')),
|
Edge(source=EdgeConnection(node_id='3', field='noise'), destination=EdgeConnection(node_id='6', field='noise')),
|
||||||
|
Edge(source=EdgeConnection(node_id='6', field='latents'), destination=EdgeConnection(node_id='7', field='latents')),
|
||||||
|
Edge(source=EdgeConnection(node_id='4', field='conditioning'), destination=EdgeConnection(node_id='6', field='positive_conditioning')),
|
||||||
|
Edge(source=EdgeConnection(node_id='5', field='conditioning'), destination=EdgeConnection(node_id='6', field='negative_conditioning')),
|
||||||
]
|
]
|
||||||
),
|
),
|
||||||
exposed_inputs=[
|
exposed_inputs=[
|
||||||
ExposedNodeInput(node_path='4', field='prompt', alias='prompt'),
|
ExposedNodeInput(node_path='4', field='prompt', alias='positive_prompt'),
|
||||||
|
ExposedNodeInput(node_path='5', field='prompt', alias='negative_prompt'),
|
||||||
ExposedNodeInput(node_path='width', field='a', alias='width'),
|
ExposedNodeInput(node_path='width', field='a', alias='width'),
|
||||||
ExposedNodeInput(node_path='height', field='a', alias='height')
|
ExposedNodeInput(node_path='height', field='a', alias='height'),
|
||||||
|
ExposedNodeInput(node_path='seed', field='a', alias='seed'),
|
||||||
],
|
],
|
||||||
exposed_outputs=[
|
exposed_outputs=[
|
||||||
ExposedNodeOutput(node_path='5', field='image', alias='image')
|
ExposedNodeOutput(node_path='7', field='image', alias='image')
|
||||||
])
|
])
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
import { forEach, size } from 'lodash-es';
|
import { forEach, size } from 'lodash-es';
|
||||||
import { ImageField, LatentsField } from 'services/api';
|
import { ImageField, LatentsField, ConditioningField } from 'services/api';
|
||||||
|
|
||||||
const OBJECT_TYPESTRING = '[object Object]';
|
const OBJECT_TYPESTRING = '[object Object]';
|
||||||
const STRING_TYPESTRING = '[object String]';
|
const STRING_TYPESTRING = '[object String]';
|
||||||
@ -74,8 +74,38 @@ const parseLatentsField = (latentsField: unknown): LatentsField | undefined => {
|
|||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
|
const parseConditioningField = (
|
||||||
|
conditioningField: unknown
|
||||||
|
): ConditioningField | undefined => {
|
||||||
|
// Must be an object
|
||||||
|
if (!isObject(conditioningField)) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// A ConditioningField must have a `conditioning_name`
|
||||||
|
if (!('conditioning_name' in conditioningField)) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// A ConditioningField's `conditioning_name` must be a string
|
||||||
|
if (typeof conditioningField.conditioning_name !== 'string') {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Build a valid ConditioningField
|
||||||
|
return {
|
||||||
|
conditioning_name: conditioningField.conditioning_name,
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
type NodeMetadata = {
|
type NodeMetadata = {
|
||||||
[key: string]: string | number | boolean | ImageField | LatentsField;
|
[key: string]:
|
||||||
|
| string
|
||||||
|
| number
|
||||||
|
| boolean
|
||||||
|
| ImageField
|
||||||
|
| LatentsField
|
||||||
|
| ConditioningField;
|
||||||
};
|
};
|
||||||
|
|
||||||
type InvokeAIMetadata = {
|
type InvokeAIMetadata = {
|
||||||
@ -101,7 +131,7 @@ export const parseNodeMetadata = (
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// the only valid object types are ImageField and LatentsField
|
// the only valid object types are ImageField, LatentsField and ConditioningField
|
||||||
if (isObject(nodeItem)) {
|
if (isObject(nodeItem)) {
|
||||||
if ('image_name' in nodeItem || 'image_type' in nodeItem) {
|
if ('image_name' in nodeItem || 'image_type' in nodeItem) {
|
||||||
const imageField = parseImageField(nodeItem);
|
const imageField = parseImageField(nodeItem);
|
||||||
@ -118,6 +148,14 @@ export const parseNodeMetadata = (
|
|||||||
}
|
}
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if ('conditioning_name' in nodeItem) {
|
||||||
|
const conditioningField = parseConditioningField(nodeItem);
|
||||||
|
if (conditioningField) {
|
||||||
|
parsed[nodeKey] = conditioningField;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// otherwise we accept any string, number or boolean
|
// otherwise we accept any string, number or boolean
|
||||||
|
@ -6,9 +6,11 @@ import BooleanInputFieldComponent from './fields/BooleanInputFieldComponent';
|
|||||||
import EnumInputFieldComponent from './fields/EnumInputFieldComponent';
|
import EnumInputFieldComponent from './fields/EnumInputFieldComponent';
|
||||||
import ImageInputFieldComponent from './fields/ImageInputFieldComponent';
|
import ImageInputFieldComponent from './fields/ImageInputFieldComponent';
|
||||||
import LatentsInputFieldComponent from './fields/LatentsInputFieldComponent';
|
import LatentsInputFieldComponent from './fields/LatentsInputFieldComponent';
|
||||||
|
import ConditioningInputFieldComponent from './fields/ConditioningInputFieldComponent';
|
||||||
import ModelInputFieldComponent from './fields/ModelInputFieldComponent';
|
import ModelInputFieldComponent from './fields/ModelInputFieldComponent';
|
||||||
import NumberInputFieldComponent from './fields/NumberInputFieldComponent';
|
import NumberInputFieldComponent from './fields/NumberInputFieldComponent';
|
||||||
import StringInputFieldComponent from './fields/StringInputFieldComponent';
|
import StringInputFieldComponent from './fields/StringInputFieldComponent';
|
||||||
|
import ItemInputFieldComponent from './fields/ItemInputFieldComponent';
|
||||||
|
|
||||||
type InputFieldComponentProps = {
|
type InputFieldComponentProps = {
|
||||||
nodeId: string;
|
nodeId: string;
|
||||||
@ -84,6 +86,16 @@ const InputFieldComponent = (props: InputFieldComponentProps) => {
|
|||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (type === 'conditioning' && template.type === 'conditioning') {
|
||||||
|
return (
|
||||||
|
<ConditioningInputFieldComponent
|
||||||
|
nodeId={nodeId}
|
||||||
|
field={field}
|
||||||
|
template={template}
|
||||||
|
/>
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
if (type === 'model' && template.type === 'model') {
|
if (type === 'model' && template.type === 'model') {
|
||||||
return (
|
return (
|
||||||
<ModelInputFieldComponent
|
<ModelInputFieldComponent
|
||||||
@ -104,6 +116,16 @@ const InputFieldComponent = (props: InputFieldComponentProps) => {
|
|||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (type === 'item' && template.type === 'item') {
|
||||||
|
return (
|
||||||
|
<ItemInputFieldComponent
|
||||||
|
nodeId={nodeId}
|
||||||
|
field={field}
|
||||||
|
template={template}
|
||||||
|
/>
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
return <Box p={2}>Unknown field type: {type}</Box>;
|
return <Box p={2}>Unknown field type: {type}</Box>;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -0,0 +1,19 @@
|
|||||||
|
import {
|
||||||
|
ConditioningInputFieldTemplate,
|
||||||
|
ConditioningInputFieldValue,
|
||||||
|
} from 'features/nodes/types/types';
|
||||||
|
import { memo } from 'react';
|
||||||
|
import { FieldComponentProps } from './types';
|
||||||
|
|
||||||
|
const ConditioningInputFieldComponent = (
|
||||||
|
props: FieldComponentProps<
|
||||||
|
ConditioningInputFieldValue,
|
||||||
|
ConditioningInputFieldTemplate
|
||||||
|
>
|
||||||
|
) => {
|
||||||
|
const { nodeId, field } = props;
|
||||||
|
|
||||||
|
return null;
|
||||||
|
};
|
||||||
|
|
||||||
|
export default memo(ConditioningInputFieldComponent);
|
@ -0,0 +1,17 @@
|
|||||||
|
import {
|
||||||
|
ItemInputFieldTemplate,
|
||||||
|
ItemInputFieldValue,
|
||||||
|
} from 'features/nodes/types/types';
|
||||||
|
import { memo } from 'react';
|
||||||
|
import { FaAddressCard, FaList } from 'react-icons/fa';
|
||||||
|
import { FieldComponentProps } from './types';
|
||||||
|
|
||||||
|
const ItemInputFieldComponent = (
|
||||||
|
props: FieldComponentProps<ItemInputFieldValue, ItemInputFieldTemplate>
|
||||||
|
) => {
|
||||||
|
const { nodeId, field } = props;
|
||||||
|
|
||||||
|
return <FaAddressCard />;
|
||||||
|
};
|
||||||
|
|
||||||
|
export default memo(ItemInputFieldComponent);
|
@ -11,8 +11,10 @@ export const FIELD_TYPE_MAP: Record<string, FieldType> = {
|
|||||||
enum: 'enum',
|
enum: 'enum',
|
||||||
ImageField: 'image',
|
ImageField: 'image',
|
||||||
LatentsField: 'latents',
|
LatentsField: 'latents',
|
||||||
|
ConditioningField: 'conditioning',
|
||||||
model: 'model',
|
model: 'model',
|
||||||
array: 'array',
|
array: 'array',
|
||||||
|
item: 'item',
|
||||||
};
|
};
|
||||||
|
|
||||||
const COLOR_TOKEN_VALUE = 500;
|
const COLOR_TOKEN_VALUE = 500;
|
||||||
@ -63,6 +65,12 @@ export const FIELDS: Record<FieldType, FieldUIConfig> = {
|
|||||||
title: 'Latents',
|
title: 'Latents',
|
||||||
description: 'Latents may be passed between nodes.',
|
description: 'Latents may be passed between nodes.',
|
||||||
},
|
},
|
||||||
|
conditioning: {
|
||||||
|
color: 'cyan',
|
||||||
|
colorCssVar: getColorTokenCssVariable('cyan'),
|
||||||
|
title: 'Conditioning',
|
||||||
|
description: 'Conditioning may be passed between nodes.',
|
||||||
|
},
|
||||||
model: {
|
model: {
|
||||||
color: 'teal',
|
color: 'teal',
|
||||||
colorCssVar: getColorTokenCssVariable('teal'),
|
colorCssVar: getColorTokenCssVariable('teal'),
|
||||||
@ -75,4 +83,10 @@ export const FIELDS: Record<FieldType, FieldUIConfig> = {
|
|||||||
title: 'Array',
|
title: 'Array',
|
||||||
description: 'TODO: Array type description.',
|
description: 'TODO: Array type description.',
|
||||||
},
|
},
|
||||||
|
item: {
|
||||||
|
color: 'gray',
|
||||||
|
colorCssVar: getColorTokenCssVariable('gray'),
|
||||||
|
title: 'Collection Item',
|
||||||
|
description: 'TODO: Collection Item type description.',
|
||||||
|
},
|
||||||
};
|
};
|
||||||
|
@ -56,8 +56,10 @@ export type FieldType =
|
|||||||
| 'enum'
|
| 'enum'
|
||||||
| 'image'
|
| 'image'
|
||||||
| 'latents'
|
| 'latents'
|
||||||
|
| 'conditioning'
|
||||||
| 'model'
|
| 'model'
|
||||||
| 'array';
|
| 'array'
|
||||||
|
| 'item';
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* An input field is persisted across reloads as part of the user's local state.
|
* An input field is persisted across reloads as part of the user's local state.
|
||||||
@ -74,9 +76,11 @@ export type InputFieldValue =
|
|||||||
| BooleanInputFieldValue
|
| BooleanInputFieldValue
|
||||||
| ImageInputFieldValue
|
| ImageInputFieldValue
|
||||||
| LatentsInputFieldValue
|
| LatentsInputFieldValue
|
||||||
|
| ConditioningInputFieldValue
|
||||||
| EnumInputFieldValue
|
| EnumInputFieldValue
|
||||||
| ModelInputFieldValue
|
| ModelInputFieldValue
|
||||||
| ArrayInputFieldValue;
|
| ArrayInputFieldValue
|
||||||
|
| ItemInputFieldValue;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* An input field template is generated on each page load from the OpenAPI schema.
|
* An input field template is generated on each page load from the OpenAPI schema.
|
||||||
@ -91,9 +95,11 @@ export type InputFieldTemplate =
|
|||||||
| BooleanInputFieldTemplate
|
| BooleanInputFieldTemplate
|
||||||
| ImageInputFieldTemplate
|
| ImageInputFieldTemplate
|
||||||
| LatentsInputFieldTemplate
|
| LatentsInputFieldTemplate
|
||||||
|
| ConditioningInputFieldTemplate
|
||||||
| EnumInputFieldTemplate
|
| EnumInputFieldTemplate
|
||||||
| ModelInputFieldTemplate
|
| ModelInputFieldTemplate
|
||||||
| ArrayInputFieldTemplate;
|
| ArrayInputFieldTemplate
|
||||||
|
| ItemInputFieldTemplate;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* An output field is persisted across as part of the user's local state.
|
* An output field is persisted across as part of the user's local state.
|
||||||
@ -162,6 +168,11 @@ export type LatentsInputFieldValue = FieldValueBase & {
|
|||||||
value?: undefined;
|
value?: undefined;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
export type ConditioningInputFieldValue = FieldValueBase & {
|
||||||
|
type: 'conditioning';
|
||||||
|
value?: undefined;
|
||||||
|
};
|
||||||
|
|
||||||
export type ImageInputFieldValue = FieldValueBase & {
|
export type ImageInputFieldValue = FieldValueBase & {
|
||||||
type: 'image';
|
type: 'image';
|
||||||
value?: Pick<ImageField, 'image_name' | 'image_type'>;
|
value?: Pick<ImageField, 'image_name' | 'image_type'>;
|
||||||
@ -177,6 +188,11 @@ export type ArrayInputFieldValue = FieldValueBase & {
|
|||||||
value?: (string | number)[];
|
value?: (string | number)[];
|
||||||
};
|
};
|
||||||
|
|
||||||
|
export type ItemInputFieldValue = FieldValueBase & {
|
||||||
|
type: 'item';
|
||||||
|
value?: undefined;
|
||||||
|
};
|
||||||
|
|
||||||
export type InputFieldTemplateBase = {
|
export type InputFieldTemplateBase = {
|
||||||
name: string;
|
name: string;
|
||||||
title: string;
|
title: string;
|
||||||
@ -229,6 +245,11 @@ export type LatentsInputFieldTemplate = InputFieldTemplateBase & {
|
|||||||
type: 'latents';
|
type: 'latents';
|
||||||
};
|
};
|
||||||
|
|
||||||
|
export type ConditioningInputFieldTemplate = InputFieldTemplateBase & {
|
||||||
|
default: undefined;
|
||||||
|
type: 'conditioning';
|
||||||
|
};
|
||||||
|
|
||||||
export type EnumInputFieldTemplate = InputFieldTemplateBase & {
|
export type EnumInputFieldTemplate = InputFieldTemplateBase & {
|
||||||
default: string | number;
|
default: string | number;
|
||||||
type: 'enum';
|
type: 'enum';
|
||||||
@ -242,10 +263,15 @@ export type ModelInputFieldTemplate = InputFieldTemplateBase & {
|
|||||||
};
|
};
|
||||||
|
|
||||||
export type ArrayInputFieldTemplate = InputFieldTemplateBase & {
|
export type ArrayInputFieldTemplate = InputFieldTemplateBase & {
|
||||||
default: (string | number)[];
|
default: [];
|
||||||
type: 'array';
|
type: 'array';
|
||||||
};
|
};
|
||||||
|
|
||||||
|
export type ItemInputFieldTemplate = InputFieldTemplateBase & {
|
||||||
|
default: undefined;
|
||||||
|
type: 'item';
|
||||||
|
};
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* JANKY CUSTOMISATION OF OpenAPI SCHEMA TYPES
|
* JANKY CUSTOMISATION OF OpenAPI SCHEMA TYPES
|
||||||
*/
|
*/
|
||||||
|
@ -9,12 +9,15 @@ import {
|
|||||||
ImageInputFieldTemplate,
|
ImageInputFieldTemplate,
|
||||||
IntegerInputFieldTemplate,
|
IntegerInputFieldTemplate,
|
||||||
LatentsInputFieldTemplate,
|
LatentsInputFieldTemplate,
|
||||||
|
ConditioningInputFieldTemplate,
|
||||||
StringInputFieldTemplate,
|
StringInputFieldTemplate,
|
||||||
ModelInputFieldTemplate,
|
ModelInputFieldTemplate,
|
||||||
InputFieldTemplateBase,
|
InputFieldTemplateBase,
|
||||||
OutputFieldTemplate,
|
OutputFieldTemplate,
|
||||||
TypeHints,
|
TypeHints,
|
||||||
FieldType,
|
FieldType,
|
||||||
|
ArrayInputFieldTemplate,
|
||||||
|
ItemInputFieldTemplate,
|
||||||
} from '../types/types';
|
} from '../types/types';
|
||||||
|
|
||||||
export type BaseFieldProperties = 'name' | 'title' | 'description';
|
export type BaseFieldProperties = 'name' | 'title' | 'description';
|
||||||
@ -196,6 +199,21 @@ const buildLatentsInputFieldTemplate = ({
|
|||||||
return template;
|
return template;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
const buildConditioningInputFieldTemplate = ({
|
||||||
|
schemaObject,
|
||||||
|
baseField,
|
||||||
|
}: BuildInputFieldArg): ConditioningInputFieldTemplate => {
|
||||||
|
const template: ConditioningInputFieldTemplate = {
|
||||||
|
...baseField,
|
||||||
|
type: 'conditioning',
|
||||||
|
inputRequirement: 'always',
|
||||||
|
inputKind: 'connection',
|
||||||
|
default: schemaObject.default ?? undefined,
|
||||||
|
};
|
||||||
|
|
||||||
|
return template;
|
||||||
|
};
|
||||||
|
|
||||||
const buildEnumInputFieldTemplate = ({
|
const buildEnumInputFieldTemplate = ({
|
||||||
schemaObject,
|
schemaObject,
|
||||||
baseField,
|
baseField,
|
||||||
@ -214,6 +232,36 @@ const buildEnumInputFieldTemplate = ({
|
|||||||
return template;
|
return template;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
const buildArrayInputFieldTemplate = ({
|
||||||
|
schemaObject,
|
||||||
|
baseField,
|
||||||
|
}: BuildInputFieldArg): ArrayInputFieldTemplate => {
|
||||||
|
const template: ArrayInputFieldTemplate = {
|
||||||
|
...baseField,
|
||||||
|
type: 'array',
|
||||||
|
inputRequirement: 'always',
|
||||||
|
inputKind: 'direct',
|
||||||
|
default: [],
|
||||||
|
};
|
||||||
|
|
||||||
|
return template;
|
||||||
|
};
|
||||||
|
|
||||||
|
const buildItemInputFieldTemplate = ({
|
||||||
|
schemaObject,
|
||||||
|
baseField,
|
||||||
|
}: BuildInputFieldArg): ItemInputFieldTemplate => {
|
||||||
|
const template: ItemInputFieldTemplate = {
|
||||||
|
...baseField,
|
||||||
|
type: 'item',
|
||||||
|
inputRequirement: 'always',
|
||||||
|
inputKind: 'direct',
|
||||||
|
default: undefined,
|
||||||
|
};
|
||||||
|
|
||||||
|
return template;
|
||||||
|
};
|
||||||
|
|
||||||
export const getFieldType = (
|
export const getFieldType = (
|
||||||
schemaObject: OpenAPIV3.SchemaObject,
|
schemaObject: OpenAPIV3.SchemaObject,
|
||||||
name: string,
|
name: string,
|
||||||
@ -266,6 +314,9 @@ export const buildInputFieldTemplate = (
|
|||||||
if (['latents'].includes(fieldType)) {
|
if (['latents'].includes(fieldType)) {
|
||||||
return buildLatentsInputFieldTemplate({ schemaObject, baseField });
|
return buildLatentsInputFieldTemplate({ schemaObject, baseField });
|
||||||
}
|
}
|
||||||
|
if (['conditioning'].includes(fieldType)) {
|
||||||
|
return buildConditioningInputFieldTemplate({ schemaObject, baseField });
|
||||||
|
}
|
||||||
if (['model'].includes(fieldType)) {
|
if (['model'].includes(fieldType)) {
|
||||||
return buildModelInputFieldTemplate({ schemaObject, baseField });
|
return buildModelInputFieldTemplate({ schemaObject, baseField });
|
||||||
}
|
}
|
||||||
@ -284,6 +335,12 @@ export const buildInputFieldTemplate = (
|
|||||||
if (['boolean'].includes(fieldType)) {
|
if (['boolean'].includes(fieldType)) {
|
||||||
return buildBooleanInputFieldTemplate({ schemaObject, baseField });
|
return buildBooleanInputFieldTemplate({ schemaObject, baseField });
|
||||||
}
|
}
|
||||||
|
if (['array'].includes(fieldType)) {
|
||||||
|
return buildArrayInputFieldTemplate({ schemaObject, baseField });
|
||||||
|
}
|
||||||
|
if (['item'].includes(fieldType)) {
|
||||||
|
return buildItemInputFieldTemplate({ schemaObject, baseField });
|
||||||
|
}
|
||||||
|
|
||||||
return;
|
return;
|
||||||
};
|
};
|
||||||
|
@ -48,6 +48,10 @@ export const buildInputFieldValue = (
|
|||||||
fieldValue.value = undefined;
|
fieldValue.value = undefined;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (template.type === 'conditioning') {
|
||||||
|
fieldValue.value = undefined;
|
||||||
|
}
|
||||||
|
|
||||||
if (template.type === 'model') {
|
if (template.type === 'model') {
|
||||||
fieldValue.value = undefined;
|
fieldValue.value = undefined;
|
||||||
}
|
}
|
||||||
|
@ -7,7 +7,7 @@ export const buildIterateNode = (): IterateInvocation => {
|
|||||||
return {
|
return {
|
||||||
id: nodeId,
|
id: nodeId,
|
||||||
type: 'iterate',
|
type: 'iterate',
|
||||||
collection: [],
|
// collection: [],
|
||||||
index: 0,
|
// index: 0,
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
@ -13,7 +13,7 @@ import {
|
|||||||
buildOutputFieldTemplates,
|
buildOutputFieldTemplates,
|
||||||
} from './fieldTemplateBuilders';
|
} from './fieldTemplateBuilders';
|
||||||
|
|
||||||
const invocationDenylist = ['Graph', 'Collect', 'LoadImage'];
|
const invocationDenylist = ['Graph', 'LoadImage'];
|
||||||
|
|
||||||
export const parseSchema = (openAPI: OpenAPIV3.Document) => {
|
export const parseSchema = (openAPI: OpenAPIV3.Document) => {
|
||||||
// filter out non-invocation schemas, plus some tricky invocations for now
|
// filter out non-invocation schemas, plus some tricky invocations for now
|
||||||
@ -32,16 +32,43 @@ export const parseSchema = (openAPI: OpenAPIV3.Document) => {
|
|||||||
if (isInvocationSchemaObject(schema)) {
|
if (isInvocationSchemaObject(schema)) {
|
||||||
const type = schema.properties.type.default;
|
const type = schema.properties.type.default;
|
||||||
|
|
||||||
const title =
|
const title = schema.ui?.title ?? schema.title.replace('Invocation', '');
|
||||||
schema.ui?.title ??
|
|
||||||
schema.title
|
|
||||||
.replace('Invocation', '')
|
|
||||||
.split(/(?=[A-Z])/) // split PascalCase into array
|
|
||||||
.join(' ');
|
|
||||||
|
|
||||||
const typeHints = schema.ui?.type_hints;
|
const typeHints = schema.ui?.type_hints;
|
||||||
|
|
||||||
const inputs = reduce(
|
const inputs: Record<string, InputFieldTemplate> = {};
|
||||||
|
|
||||||
|
if (type === 'collect') {
|
||||||
|
const itemProperty = schema.properties[
|
||||||
|
'item'
|
||||||
|
] as InvocationSchemaObject;
|
||||||
|
// Handle the special Collect node
|
||||||
|
inputs.item = {
|
||||||
|
type: 'item',
|
||||||
|
name: 'item',
|
||||||
|
description: itemProperty.description ?? '',
|
||||||
|
title: 'Collection Item',
|
||||||
|
inputKind: 'connection',
|
||||||
|
inputRequirement: 'always',
|
||||||
|
default: undefined,
|
||||||
|
};
|
||||||
|
} else if (type === 'iterate') {
|
||||||
|
const itemProperty = schema.properties[
|
||||||
|
'collection'
|
||||||
|
] as InvocationSchemaObject;
|
||||||
|
|
||||||
|
inputs.collection = {
|
||||||
|
type: 'array',
|
||||||
|
name: 'collection',
|
||||||
|
title: itemProperty.title ?? '',
|
||||||
|
default: [],
|
||||||
|
description: itemProperty.description ?? '',
|
||||||
|
inputRequirement: 'always',
|
||||||
|
inputKind: 'connection',
|
||||||
|
};
|
||||||
|
} else {
|
||||||
|
// All other nodes
|
||||||
|
reduce(
|
||||||
schema.properties,
|
schema.properties,
|
||||||
(inputsAccumulator, property, propertyName) => {
|
(inputsAccumulator, property, propertyName) => {
|
||||||
if (
|
if (
|
||||||
@ -49,32 +76,18 @@ export const parseSchema = (openAPI: OpenAPIV3.Document) => {
|
|||||||
!['type', 'id'].includes(propertyName) &&
|
!['type', 'id'].includes(propertyName) &&
|
||||||
isSchemaObject(property)
|
isSchemaObject(property)
|
||||||
) {
|
) {
|
||||||
let field: InputFieldTemplate | undefined;
|
const field: InputFieldTemplate | undefined =
|
||||||
if (propertyName === 'collection') {
|
buildInputFieldTemplate(property, propertyName, typeHints);
|
||||||
field = {
|
|
||||||
default: property.default ?? [],
|
|
||||||
name: 'collection',
|
|
||||||
title: property.title ?? '',
|
|
||||||
description: property.description ?? '',
|
|
||||||
type: 'array',
|
|
||||||
inputRequirement: 'always',
|
|
||||||
inputKind: 'connection',
|
|
||||||
};
|
|
||||||
} else {
|
|
||||||
field = buildInputFieldTemplate(
|
|
||||||
property,
|
|
||||||
propertyName,
|
|
||||||
typeHints
|
|
||||||
);
|
|
||||||
}
|
|
||||||
if (field) {
|
if (field) {
|
||||||
inputsAccumulator[propertyName] = field;
|
inputsAccumulator[propertyName] = field;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return inputsAccumulator;
|
return inputsAccumulator;
|
||||||
},
|
},
|
||||||
{} as Record<string, InputFieldTemplate>
|
inputs
|
||||||
);
|
);
|
||||||
|
}
|
||||||
|
|
||||||
const rawOutput = (schema as InvocationSchemaObject).output;
|
const rawOutput = (schema as InvocationSchemaObject).output;
|
||||||
|
|
||||||
|
@ -107,7 +107,7 @@ const initialSystemState: SystemState = {
|
|||||||
subscribedNodeIds: [],
|
subscribedNodeIds: [],
|
||||||
wereModelsReceived: false,
|
wereModelsReceived: false,
|
||||||
wasSchemaParsed: false,
|
wasSchemaParsed: false,
|
||||||
consoleLogLevel: 'error',
|
consoleLogLevel: 'debug',
|
||||||
shouldLogToConsole: true,
|
shouldLogToConsole: true,
|
||||||
statusTranslationKey: 'common.statusDisconnected',
|
statusTranslationKey: 'common.statusDisconnected',
|
||||||
canceledSession: '',
|
canceledSession: '',
|
||||||
@ -384,6 +384,13 @@ export const systemSlice = createSlice({
|
|||||||
state.statusTranslationKey = 'common.statusPreparing';
|
state.statusTranslationKey = 'common.statusPreparing';
|
||||||
});
|
});
|
||||||
|
|
||||||
|
builder.addCase(sessionInvoked.rejected, (state, action) => {
|
||||||
|
const error = action.payload as string | undefined;
|
||||||
|
state.toastQueue.push(
|
||||||
|
makeToast({ title: error || t('toast.serverError'), status: 'error' })
|
||||||
|
);
|
||||||
|
});
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Session Canceled
|
* Session Canceled
|
||||||
*/
|
*/
|
||||||
|
@ -46,6 +46,8 @@ export const socketMiddleware = () => {
|
|||||||
// TODO: handle providing jwt to socket.io
|
// TODO: handle providing jwt to socket.io
|
||||||
socketOptions.auth = { token: OpenAPI.TOKEN };
|
socketOptions.auth = { token: OpenAPI.TOKEN };
|
||||||
}
|
}
|
||||||
|
|
||||||
|
socketOptions.transports = ['websocket', 'polling'];
|
||||||
}
|
}
|
||||||
|
|
||||||
const socket: Socket<ServerToClientEvents, ClientToServerEvents> = io(
|
const socket: Socket<ServerToClientEvents, ClientToServerEvents> = io(
|
||||||
|
@ -22,6 +22,8 @@ import {
|
|||||||
} from 'services/thunks/gallery';
|
} from 'services/thunks/gallery';
|
||||||
import { receivedModels } from 'services/thunks/model';
|
import { receivedModels } from 'services/thunks/model';
|
||||||
import { receivedOpenAPISchema } from 'services/thunks/schema';
|
import { receivedOpenAPISchema } from 'services/thunks/schema';
|
||||||
|
import { makeToast } from '../../../features/system/hooks/useToastWatcher';
|
||||||
|
import { addToast } from '../../../features/system/store/systemSlice';
|
||||||
|
|
||||||
type SetEventListenersArg = {
|
type SetEventListenersArg = {
|
||||||
socket: Socket<ServerToClientEvents, ClientToServerEvents>;
|
socket: Socket<ServerToClientEvents, ClientToServerEvents>;
|
||||||
@ -78,6 +80,16 @@ export const setEventListeners = (arg: SetEventListenersArg) => {
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
|
socket.on('connect_error', (error) => {
|
||||||
|
if (error && error.message) {
|
||||||
|
dispatch(
|
||||||
|
addToast(
|
||||||
|
makeToast({ title: error.message, status: 'error', duration: 10000 })
|
||||||
|
)
|
||||||
|
);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Disconnect
|
* Disconnect
|
||||||
*/
|
*/
|
||||||
|
@ -101,17 +101,24 @@ export const nodeAdded = createAppAsyncThunk(
|
|||||||
*/
|
*/
|
||||||
export const sessionInvoked = createAppAsyncThunk(
|
export const sessionInvoked = createAppAsyncThunk(
|
||||||
'api/sessionInvoked',
|
'api/sessionInvoked',
|
||||||
async (arg: { sessionId: string }, _thunkApi) => {
|
async (arg: { sessionId: string }, { rejectWithValue }) => {
|
||||||
const { sessionId } = arg;
|
const { sessionId } = arg;
|
||||||
|
|
||||||
|
try {
|
||||||
const response = await SessionsService.invokeSession({
|
const response = await SessionsService.invokeSession({
|
||||||
sessionId,
|
sessionId,
|
||||||
all: true,
|
all: true,
|
||||||
});
|
});
|
||||||
|
|
||||||
sessionLog.info({ arg, response }, `Session invoked (${sessionId})`);
|
sessionLog.info({ arg, response }, `Session invoked (${sessionId})`);
|
||||||
|
|
||||||
return response;
|
return response;
|
||||||
|
} catch (error) {
|
||||||
|
const err = error as any;
|
||||||
|
if (err.status === 403) {
|
||||||
|
return rejectWithValue(err.body.detail);
|
||||||
|
}
|
||||||
|
throw error;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
);
|
);
|
||||||
|
|
||||||
|
@ -463,16 +463,16 @@ def test_graph_subgraph_t2i():
|
|||||||
|
|
||||||
n4 = ShowImageInvocation(id = "4")
|
n4 = ShowImageInvocation(id = "4")
|
||||||
g.add_node(n4)
|
g.add_node(n4)
|
||||||
g.add_edge(create_edge("1.5","image","4","image"))
|
g.add_edge(create_edge("1.7","image","4","image"))
|
||||||
|
|
||||||
# Validate
|
# Validate
|
||||||
dg = g.nx_graph_flat()
|
dg = g.nx_graph_flat()
|
||||||
assert set(dg.nodes) == set(['1.width', '1.height', '1.3', '1.4', '1.5', '2', '3', '4'])
|
assert set(dg.nodes) == set(['1.width', '1.height', '1.seed', '1.3', '1.4', '1.5', '1.6', '1.7', '2', '3', '4'])
|
||||||
expected_edges = [(f'1.{e.source.node_id}',f'1.{e.destination.node_id}') for e in lg.graph.edges]
|
expected_edges = [(f'1.{e.source.node_id}',f'1.{e.destination.node_id}') for e in lg.graph.edges]
|
||||||
expected_edges.extend([
|
expected_edges.extend([
|
||||||
('2','1.width'),
|
('2','1.width'),
|
||||||
('3','1.height'),
|
('3','1.height'),
|
||||||
('1.5','4')
|
('1.7','4')
|
||||||
])
|
])
|
||||||
print(expected_edges)
|
print(expected_edges)
|
||||||
print(list(dg.edges))
|
print(list(dg.edges))
|
||||||
|
Loading…
Reference in New Issue
Block a user