mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Merge branch 'main' into api/add-trigger-string-retrieval
This commit is contained in:
commit
fc14ac7faa
12
.github/workflows/build-container.yml
vendored
12
.github/workflows/build-container.yml
vendored
@ -6,12 +6,12 @@ on:
|
||||
- 'update/ci/docker/*'
|
||||
- 'update/docker/*'
|
||||
paths:
|
||||
- '/pyproject.toml'
|
||||
- '/ldm/**'
|
||||
- '/invokeai/backend/**'
|
||||
- '/invokeai/configs/**'
|
||||
- '/invokeai/frontend/dist/**'
|
||||
- '/docker/Dockerfile'
|
||||
- 'pyproject.toml'
|
||||
- 'ldm/**'
|
||||
- 'invokeai/backend/**'
|
||||
- 'invokeai/configs/**'
|
||||
- 'invokeai/frontend/dist/**'
|
||||
- 'docker/Dockerfile'
|
||||
tags:
|
||||
- 'v*.*.*'
|
||||
workflow_dispatch:
|
||||
|
10
.github/workflows/test-invoke-pip-skip.yml
vendored
10
.github/workflows/test-invoke-pip-skip.yml
vendored
@ -2,11 +2,11 @@ name: Test invoke.py pip
|
||||
on:
|
||||
pull_request:
|
||||
paths-ignore:
|
||||
- '/pyproject.toml'
|
||||
- '/ldm/**'
|
||||
- '/invokeai/backend/**'
|
||||
- '/invokeai/configs/**'
|
||||
- '/invokeai/frontend/dist/**'
|
||||
- 'pyproject.toml'
|
||||
- 'ldm/**'
|
||||
- 'invokeai/backend/**'
|
||||
- 'invokeai/configs/**'
|
||||
- 'invokeai/frontend/dist/**'
|
||||
merge_group:
|
||||
workflow_dispatch:
|
||||
|
||||
|
20
.github/workflows/test-invoke-pip.yml
vendored
20
.github/workflows/test-invoke-pip.yml
vendored
@ -4,18 +4,18 @@ on:
|
||||
branches:
|
||||
- 'main'
|
||||
paths:
|
||||
- '/pyproject.toml'
|
||||
- '/ldm/**'
|
||||
- '/invokeai/backend/**'
|
||||
- '/invokeai/configs/**'
|
||||
- '/invokeai/frontend/dist/**'
|
||||
- 'pyproject.toml'
|
||||
- 'ldm/**'
|
||||
- 'invokeai/backend/**'
|
||||
- 'invokeai/configs/**'
|
||||
- 'invokeai/frontend/dist/**'
|
||||
pull_request:
|
||||
paths:
|
||||
- '/pyproject.toml'
|
||||
- '/ldm/**'
|
||||
- '/invokeai/backend/**'
|
||||
- '/invokeai/configs/**'
|
||||
- '/invokeai/frontend/dist/**'
|
||||
- 'pyproject.toml'
|
||||
- 'ldm/**'
|
||||
- 'invokeai/backend/**'
|
||||
- 'invokeai/configs/**'
|
||||
- 'invokeai/frontend/dist/**'
|
||||
types:
|
||||
- 'ready_for_review'
|
||||
- 'opened'
|
||||
|
@ -80,6 +80,13 @@ only `.safetensors` and `.ckpt` models, but they can be easily loaded
|
||||
into InvokeAI and/or converted into optimized `diffusers` models. Be
|
||||
aware that CIVITAI hosts many models that generate NSFW content.
|
||||
|
||||
!!! note
|
||||
|
||||
InvokeAI 2.3.x does not support directly importing and
|
||||
running Stable Diffusion version 2 checkpoint models. You may instead
|
||||
convert them into `diffusers` models using the conversion methods
|
||||
described below.
|
||||
|
||||
## Installation
|
||||
|
||||
There are multiple ways to install and manage models:
|
||||
@ -90,7 +97,7 @@ There are multiple ways to install and manage models:
|
||||
models files.
|
||||
|
||||
3. The web interface (WebUI) has a GUI for importing and managing
|
||||
models.
|
||||
models.
|
||||
|
||||
### Installation via `invokeai-configure`
|
||||
|
||||
@ -106,7 +113,7 @@ confirm that the files are complete.
|
||||
You can install a new model, including any of the community-supported ones, via
|
||||
the command-line client's `!import_model` command.
|
||||
|
||||
#### Installing `.ckpt` and `.safetensors` models
|
||||
#### Installing individual `.ckpt` and `.safetensors` models
|
||||
|
||||
If the model is already downloaded to your local disk, use
|
||||
`!import_model /path/to/file.ckpt` to load it. For example:
|
||||
@ -131,15 +138,40 @@ invoke> !import_model https://example.org/sd_models/martians.safetensors
|
||||
For this to work, the URL must not be password-protected. Otherwise
|
||||
you will receive a 404 error.
|
||||
|
||||
When you import a legacy model, the CLI will ask you a few questions
|
||||
about the model, including what size image it was trained on (usually
|
||||
512x512), what name and description you wish to use for it, what
|
||||
configuration file to use for it (usually the default
|
||||
`v1-inference.yaml`), whether you'd like to make this model the
|
||||
default at startup time, and whether you would like to install a
|
||||
custom VAE (variable autoencoder) file for the model. For recent
|
||||
models, the answer to the VAE question is usually "no," but it won't
|
||||
hurt to answer "yes".
|
||||
When you import a legacy model, the CLI will first ask you what type
|
||||
of model this is. You can indicate whether it is a model based on
|
||||
Stable Diffusion 1.x (1.4 or 1.5), one based on Stable Diffusion 2.x,
|
||||
or a 1.x inpainting model. Be careful to indicate the correct model
|
||||
type, or it will not load correctly. You can correct the model type
|
||||
after the fact using the `!edit_model` command.
|
||||
|
||||
The system will then ask you a few other questions about the model,
|
||||
including what size image it was trained on (usually 512x512), what
|
||||
name and description you wish to use for it, and whether you would
|
||||
like to install a custom VAE (variable autoencoder) file for the
|
||||
model. For recent models, the answer to the VAE question is usually
|
||||
"no," but it won't hurt to answer "yes".
|
||||
|
||||
After importing, the model will load. If this is successful, you will
|
||||
be asked if you want to keep the model loaded in memory to start
|
||||
generating immediately. You'll also be asked if you wish to make this
|
||||
the default model on startup. You can change this later using
|
||||
`!edit_model`.
|
||||
|
||||
#### Importing a batch of `.ckpt` and `.safetensors` models from a directory
|
||||
|
||||
You may also point `!import_model` to a directory containing a set of
|
||||
`.ckpt` or `.safetensors` files. They will be imported _en masse_.
|
||||
|
||||
!!! example
|
||||
|
||||
```console
|
||||
invoke> !import_model C:/Users/fred/Downloads/civitai_models/
|
||||
```
|
||||
|
||||
You will be given the option to import all models found in the
|
||||
directory, or select which ones to import. If there are subfolders
|
||||
within the directory, they will be searched for models to import.
|
||||
|
||||
#### Installing `diffusers` models
|
||||
|
||||
@ -279,19 +311,23 @@ After you save the modified `models.yaml` file relaunch
|
||||
### Installation via the WebUI
|
||||
|
||||
To access the WebUI Model Manager, click on the button that looks like
|
||||
a cute in the upper right side of the browser screen. This will bring
|
||||
a cube in the upper right side of the browser screen. This will bring
|
||||
up a dialogue that lists the models you have already installed, and
|
||||
allows you to load, delete or edit them:
|
||||
|
||||
<figure markdown>
|
||||
|
||||
![model-manager](../assets/installing-models/webui-models-1.png)
|
||||
|
||||
</figure>
|
||||
|
||||
To add a new model, click on **+ Add New** and select to either a
|
||||
checkpoint/safetensors model, or a diffusers model:
|
||||
|
||||
<figure markdown>
|
||||
|
||||
![model-manager-add-new](../assets/installing-models/webui-models-2.png)
|
||||
|
||||
</figure>
|
||||
|
||||
In this example, we chose **Add Diffusers**. As shown in the figure
|
||||
@ -302,7 +338,9 @@ choose to enter a path to disk, the system will autocomplete for you
|
||||
as you type:
|
||||
|
||||
<figure markdown>
|
||||
|
||||
![model-manager-add-diffusers](../assets/installing-models/webui-models-3.png)
|
||||
|
||||
</figure>
|
||||
|
||||
Press **Add Model** at the bottom of the dialogue (scrolled out of
|
||||
@ -317,7 +355,9 @@ directory and press the "Search" icon. This will display the
|
||||
subfolders, and allow you to choose which ones to import:
|
||||
|
||||
<figure markdown>
|
||||
|
||||
![model-manager-add-checkpoint](../assets/installing-models/webui-models-4.png)
|
||||
|
||||
</figure>
|
||||
|
||||
## Model Management Startup Options
|
||||
@ -342,9 +382,8 @@ invoke.sh --autoconvert /home/fred/stable-diffusion-checkpoints
|
||||
|
||||
And here is what the same argument looks like in `invokeai.init`:
|
||||
|
||||
```
|
||||
```bash
|
||||
--outdir="/home/fred/invokeai/outputs
|
||||
--no-nsfw_checker
|
||||
--autoconvert /home/fred/stable-diffusion-checkpoints
|
||||
```
|
||||
|
||||
|
638
invokeai/frontend/dist/assets/index-12bd70ca.js
vendored
638
invokeai/frontend/dist/assets/index-12bd70ca.js
vendored
File diff suppressed because one or more lines are too long
1
invokeai/frontend/dist/assets/index-14cb2922.css
vendored
Normal file
1
invokeai/frontend/dist/assets/index-14cb2922.css
vendored
Normal file
File diff suppressed because one or more lines are too long
638
invokeai/frontend/dist/assets/index-9237ac63.js
vendored
Normal file
638
invokeai/frontend/dist/assets/index-9237ac63.js
vendored
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
4
invokeai/frontend/dist/index.html
vendored
4
invokeai/frontend/dist/index.html
vendored
@ -5,8 +5,8 @@
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||
<title>InvokeAI - A Stable Diffusion Toolkit</title>
|
||||
<link rel="shortcut icon" type="icon" href="./assets/favicon-0d253ced.ico" />
|
||||
<script type="module" crossorigin src="./assets/index-12bd70ca.js"></script>
|
||||
<link rel="stylesheet" href="./assets/index-c1af841f.css">
|
||||
<script type="module" crossorigin src="./assets/index-9237ac63.js"></script>
|
||||
<link rel="stylesheet" href="./assets/index-14cb2922.css">
|
||||
</head>
|
||||
|
||||
<body>
|
||||
|
@ -1,10 +1,12 @@
|
||||
{
|
||||
"general": "General",
|
||||
"images": "Images",
|
||||
"steps": "Steps",
|
||||
"cfgScale": "CFG Scale",
|
||||
"width": "Width",
|
||||
"height": "Height",
|
||||
"sampler": "Sampler",
|
||||
"imageToImage": "Image To Image",
|
||||
"seed": "Seed",
|
||||
"randomizeSeed": "Randomize Seed",
|
||||
"shuffle": "Shuffle",
|
||||
|
@ -1,10 +1,12 @@
|
||||
{
|
||||
"general": "General",
|
||||
"images": "Images",
|
||||
"steps": "Steps",
|
||||
"cfgScale": "CFG Scale",
|
||||
"width": "Width",
|
||||
"height": "Height",
|
||||
"sampler": "Sampler",
|
||||
"imageToImage": "Image To Image",
|
||||
"seed": "Seed",
|
||||
"randomizeSeed": "Randomize Seed",
|
||||
"shuffle": "Shuffle",
|
||||
|
@ -5,6 +5,7 @@
|
||||
"confirmOnDelete": "Confirm On Delete",
|
||||
"displayHelpIcons": "Display Help Icons",
|
||||
"useCanvasBeta": "Use Canvas Beta Layout",
|
||||
"useSlidersForAll": "Use Sliders For All Options",
|
||||
"enableImageDebugging": "Enable Image Debugging",
|
||||
"resetWebUI": "Reset Web UI",
|
||||
"resetWebUIDesc1": "Resetting the web UI only resets the browser's local cache of your images and remembered settings. It does not delete any images from disk.",
|
||||
|
@ -1,10 +1,12 @@
|
||||
{
|
||||
"general": "General",
|
||||
"images": "Images",
|
||||
"steps": "Steps",
|
||||
"cfgScale": "CFG Scale",
|
||||
"width": "Width",
|
||||
"height": "Height",
|
||||
"sampler": "Sampler",
|
||||
"imageToImage": "Image To Image",
|
||||
"seed": "Seed",
|
||||
"randomizeSeed": "Randomize Seed",
|
||||
"shuffle": "Shuffle",
|
||||
|
@ -1,10 +1,12 @@
|
||||
{
|
||||
"general": "General",
|
||||
"images": "Images",
|
||||
"steps": "Steps",
|
||||
"cfgScale": "CFG Scale",
|
||||
"width": "Width",
|
||||
"height": "Height",
|
||||
"sampler": "Sampler",
|
||||
"imageToImage": "Image To Image",
|
||||
"seed": "Seed",
|
||||
"randomizeSeed": "Randomize Seed",
|
||||
"shuffle": "Shuffle",
|
||||
|
@ -5,6 +5,7 @@
|
||||
"confirmOnDelete": "Confirm On Delete",
|
||||
"displayHelpIcons": "Display Help Icons",
|
||||
"useCanvasBeta": "Use Canvas Beta Layout",
|
||||
"useSlidersForAll": "Use Sliders For All Options",
|
||||
"enableImageDebugging": "Enable Image Debugging",
|
||||
"resetWebUI": "Reset Web UI",
|
||||
"resetWebUIDesc1": "Resetting the web UI only resets the browser's local cache of your images and remembered settings. It does not delete any images from disk.",
|
||||
|
@ -6,7 +6,6 @@
|
||||
min-width: max-content;
|
||||
margin: 0;
|
||||
font-weight: bold;
|
||||
font-size: 0.9rem;
|
||||
color: var(--text-color-secondary);
|
||||
}
|
||||
|
||||
|
@ -78,7 +78,7 @@ export default function IAISlider(props: IAIFullSliderProps) {
|
||||
tooltipSuffix = '',
|
||||
withSliderMarks = false,
|
||||
sliderMarkLeftOffset = 0,
|
||||
sliderMarkRightOffset = -7,
|
||||
sliderMarkRightOffset = -1,
|
||||
withInput = false,
|
||||
isInteger = false,
|
||||
inputWidth = '5.5rem',
|
||||
@ -164,6 +164,7 @@ export default function IAISlider(props: IAIFullSliderProps) {
|
||||
>
|
||||
<FormLabel
|
||||
className="invokeai__slider-component-label"
|
||||
fontSize="sm"
|
||||
{...sliderFormLabelProps}
|
||||
>
|
||||
{label}
|
||||
|
55
invokeai/frontend/src/common/components/SubItemHook.tsx
Normal file
55
invokeai/frontend/src/common/components/SubItemHook.tsx
Normal file
@ -0,0 +1,55 @@
|
||||
import { Box } from '@chakra-ui/react';
|
||||
|
||||
interface SubItemHookProps {
|
||||
active?: boolean;
|
||||
width?: string | number;
|
||||
height?: string | number;
|
||||
side?: 'left' | 'right';
|
||||
}
|
||||
|
||||
export default function SubItemHook(props: SubItemHookProps) {
|
||||
const {
|
||||
active = true,
|
||||
width = '1rem',
|
||||
height = '1.3rem',
|
||||
side = 'right',
|
||||
} = props;
|
||||
return (
|
||||
<>
|
||||
{side === 'right' && (
|
||||
<Box
|
||||
width={width}
|
||||
height={height}
|
||||
margin="-0.5rem 0.5rem 0 0.5rem"
|
||||
borderLeft={
|
||||
active
|
||||
? '3px solid var(--subhook-color)'
|
||||
: '3px solid var(--tab-hover-color)'
|
||||
}
|
||||
borderBottom={
|
||||
active
|
||||
? '3px solid var(--subhook-color)'
|
||||
: '3px solid var(--tab-hover-color)'
|
||||
}
|
||||
/>
|
||||
)}
|
||||
{side === 'left' && (
|
||||
<Box
|
||||
width={width}
|
||||
height={height}
|
||||
margin="-0.5rem 0.5rem 0 0.5rem"
|
||||
borderRight={
|
||||
active
|
||||
? '3px solid var(--subhook-color)'
|
||||
: '3px solid var(--tab-hover-color)'
|
||||
}
|
||||
borderBottom={
|
||||
active
|
||||
? '3px solid var(--subhook-color)'
|
||||
: '3px solid var(--tab-hover-color)'
|
||||
}
|
||||
/>
|
||||
)}
|
||||
</>
|
||||
);
|
||||
}
|
@ -170,6 +170,9 @@ export const frontendToBackendParameters = (
|
||||
let esrganParameters: false | BackendEsrGanParameters = false;
|
||||
let facetoolParameters: false | BackendFacetoolParameters = false;
|
||||
|
||||
// Multiplying it by 10000 so the Slider can have values between 0 and 1 which makes more sense
|
||||
generationParameters.threshold = threshold * 1000;
|
||||
|
||||
if (negativePrompt !== '') {
|
||||
generationParameters.prompt = `${prompt} [${negativePrompt}]`;
|
||||
}
|
||||
|
@ -68,7 +68,7 @@ const BoundingBoxSettings = () => {
|
||||
};
|
||||
|
||||
return (
|
||||
<Flex direction="column" gap="1rem">
|
||||
<Flex direction="column" gap={2}>
|
||||
<IAISlider
|
||||
label={t('parameters:width')}
|
||||
min={64}
|
||||
@ -82,6 +82,7 @@ const BoundingBoxSettings = () => {
|
||||
inputReadOnly
|
||||
withReset
|
||||
handleReset={handleResetWidth}
|
||||
sliderMarkRightOffset={-7}
|
||||
/>
|
||||
<IAISlider
|
||||
label={t('parameters:height')}
|
||||
@ -96,6 +97,7 @@ const BoundingBoxSettings = () => {
|
||||
inputReadOnly
|
||||
withReset
|
||||
handleReset={handleResetHeight}
|
||||
sliderMarkRightOffset={-7}
|
||||
/>
|
||||
</Flex>
|
||||
);
|
||||
|
@ -107,7 +107,7 @@ const InfillAndScalingSettings = () => {
|
||||
};
|
||||
|
||||
return (
|
||||
<Flex direction="column" gap="1rem">
|
||||
<Flex direction="column" gap={4}>
|
||||
<IAISelect
|
||||
label={t('parameters:scaleBeforeProcessing')}
|
||||
validValues={BOUNDING_BOX_SCALES_DICT}
|
||||
@ -130,6 +130,7 @@ const InfillAndScalingSettings = () => {
|
||||
inputReadOnly
|
||||
withReset
|
||||
handleReset={handleResetScaledWidth}
|
||||
sliderMarkRightOffset={-7}
|
||||
/>
|
||||
<IAISlider
|
||||
isInputDisabled={!isManual}
|
||||
@ -147,6 +148,7 @@ const InfillAndScalingSettings = () => {
|
||||
inputReadOnly
|
||||
withReset
|
||||
handleReset={handleResetScaledHeight}
|
||||
sliderMarkRightOffset={-7}
|
||||
/>
|
||||
<IAISelect
|
||||
label={t('parameters:infillMethod')}
|
||||
|
@ -6,7 +6,7 @@ import SeamStrength from './SeamStrength';
|
||||
|
||||
const SeamCorrectionSettings = () => {
|
||||
return (
|
||||
<Flex direction="column" gap="1rem">
|
||||
<Flex direction="column" gap={2}>
|
||||
<SeamSize />
|
||||
<SeamBlur />
|
||||
<SeamStrength />
|
||||
|
@ -0,0 +1,36 @@
|
||||
import type { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setCodeformerFidelity } from 'features/parameters/store/postprocessingSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function CodeformerFidelity() {
|
||||
const isGFPGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isGFPGANAvailable
|
||||
);
|
||||
|
||||
const codeformerFidelity = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.codeformerFidelity
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
isSliderDisabled={!isGFPGANAvailable}
|
||||
isInputDisabled={!isGFPGANAvailable}
|
||||
isResetDisabled={!isGFPGANAvailable}
|
||||
label={t('parameters:codeformerFidelity')}
|
||||
step={0.05}
|
||||
min={0}
|
||||
max={1}
|
||||
onChange={(v) => dispatch(setCodeformerFidelity(v))}
|
||||
handleReset={() => dispatch(setCodeformerFidelity(1))}
|
||||
value={codeformerFidelity}
|
||||
withReset
|
||||
withSliderMarks
|
||||
withInput
|
||||
/>
|
||||
);
|
||||
}
|
@ -1,99 +1,23 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
|
||||
import { FacetoolType } from 'features/parameters/store/postprocessingSlice';
|
||||
|
||||
import {
|
||||
setCodeformerFidelity,
|
||||
setFacetoolStrength,
|
||||
setFacetoolType,
|
||||
} from 'features/parameters/store/postprocessingSlice';
|
||||
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { FACETOOL_TYPES } from 'app/constants';
|
||||
import IAINumberInput from 'common/components/IAINumberInput';
|
||||
import IAISelect from 'common/components/IAISelect';
|
||||
import { postprocessingSelector } from 'features/parameters/store/postprocessingSelectors';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import { isEqual } from 'lodash';
|
||||
import { ChangeEvent } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const optionsSelector = createSelector(
|
||||
[postprocessingSelector, systemSelector],
|
||||
(
|
||||
{ facetoolStrength, facetoolType, codeformerFidelity },
|
||||
{ isGFPGANAvailable }
|
||||
) => {
|
||||
return {
|
||||
facetoolStrength,
|
||||
facetoolType,
|
||||
codeformerFidelity,
|
||||
isGFPGANAvailable,
|
||||
};
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
);
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import type { RootState } from 'app/store';
|
||||
import FaceRestoreType from './FaceRestoreType';
|
||||
import FaceRestoreStrength from './FaceRestoreStrength';
|
||||
import CodeformerFidelity from './CodeformerFidelity';
|
||||
|
||||
/**
|
||||
* Displays face-fixing/GFPGAN options (strength).
|
||||
*/
|
||||
const FaceRestoreSettings = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const {
|
||||
facetoolStrength,
|
||||
facetoolType,
|
||||
codeformerFidelity,
|
||||
isGFPGANAvailable,
|
||||
} = useAppSelector(optionsSelector);
|
||||
|
||||
const handleChangeStrength = (v: number) => dispatch(setFacetoolStrength(v));
|
||||
|
||||
const handleChangeCodeformerFidelity = (v: number) =>
|
||||
dispatch(setCodeformerFidelity(v));
|
||||
|
||||
const handleChangeFacetoolType = (e: ChangeEvent<HTMLSelectElement>) =>
|
||||
dispatch(setFacetoolType(e.target.value as FacetoolType));
|
||||
|
||||
const { t } = useTranslation();
|
||||
const facetoolType = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.facetoolType
|
||||
);
|
||||
|
||||
return (
|
||||
<Flex direction="column" gap={2}>
|
||||
<IAISelect
|
||||
label={t('parameters:type')}
|
||||
validValues={FACETOOL_TYPES.concat()}
|
||||
value={facetoolType}
|
||||
onChange={handleChangeFacetoolType}
|
||||
/>
|
||||
<IAINumberInput
|
||||
isDisabled={!isGFPGANAvailable}
|
||||
label={t('parameters:strength')}
|
||||
step={0.05}
|
||||
min={0}
|
||||
max={1}
|
||||
onChange={handleChangeStrength}
|
||||
value={facetoolStrength}
|
||||
width="90px"
|
||||
isInteger={false}
|
||||
/>
|
||||
{facetoolType === 'codeformer' && (
|
||||
<IAINumberInput
|
||||
isDisabled={!isGFPGANAvailable}
|
||||
label={t('parameters:codeformerFidelity')}
|
||||
step={0.05}
|
||||
min={0}
|
||||
max={1}
|
||||
onChange={handleChangeCodeformerFidelity}
|
||||
value={codeformerFidelity}
|
||||
width="90px"
|
||||
isInteger={false}
|
||||
/>
|
||||
)}
|
||||
<Flex direction="column" gap={2} minWidth="20rem">
|
||||
<FaceRestoreType />
|
||||
<FaceRestoreStrength />
|
||||
{facetoolType === 'codeformer' && <CodeformerFidelity />}
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
@ -0,0 +1,36 @@
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setFacetoolStrength } from 'features/parameters/store/postprocessingSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function FaceRestoreStrength() {
|
||||
const isGFPGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isGFPGANAvailable
|
||||
);
|
||||
|
||||
const facetoolStrength = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.facetoolStrength
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
isSliderDisabled={!isGFPGANAvailable}
|
||||
isInputDisabled={!isGFPGANAvailable}
|
||||
isResetDisabled={!isGFPGANAvailable}
|
||||
label={t('parameters:strength')}
|
||||
step={0.05}
|
||||
min={0}
|
||||
max={1}
|
||||
onChange={(v) => dispatch(setFacetoolStrength(v))}
|
||||
handleReset={() => dispatch(setFacetoolStrength(0.75))}
|
||||
value={facetoolStrength}
|
||||
withReset
|
||||
withSliderMarks
|
||||
withInput
|
||||
/>
|
||||
);
|
||||
}
|
@ -0,0 +1,31 @@
|
||||
import { FACETOOL_TYPES } from 'app/constants';
|
||||
import { type RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAISelect from 'common/components/IAISelect';
|
||||
import {
|
||||
type FacetoolType,
|
||||
setFacetoolType,
|
||||
} from 'features/parameters/store/postprocessingSlice';
|
||||
import { type ChangeEvent } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function FaceRestoreType() {
|
||||
const facetoolType = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.facetoolType
|
||||
);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChangeFacetoolType = (e: ChangeEvent<HTMLSelectElement>) =>
|
||||
dispatch(setFacetoolType(e.target.value as FacetoolType));
|
||||
|
||||
return (
|
||||
<IAISelect
|
||||
label={t('parameters:type')}
|
||||
validValues={FACETOOL_TYPES.concat()}
|
||||
value={facetoolType}
|
||||
onChange={handleChangeFacetoolType}
|
||||
/>
|
||||
);
|
||||
}
|
@ -4,6 +4,7 @@ import type { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import IAISwitch from 'common/components/IAISwitch';
|
||||
import SubItemHook from 'common/components/SubItemHook';
|
||||
import { postprocessingSelector } from 'features/parameters/store/postprocessingSelectors';
|
||||
import {
|
||||
setHiresFix,
|
||||
@ -39,23 +40,27 @@ const HiresStrength = () => {
|
||||
};
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={t('parameters:hiresStrength')}
|
||||
step={0.01}
|
||||
min={0.01}
|
||||
max={0.99}
|
||||
onChange={handleHiresStrength}
|
||||
value={hiresStrength}
|
||||
isInteger={false}
|
||||
withInput
|
||||
withSliderMarks
|
||||
inputWidth="5.5rem"
|
||||
withReset
|
||||
handleReset={handleHiResStrengthReset}
|
||||
isSliderDisabled={!hiresFix}
|
||||
isInputDisabled={!hiresFix}
|
||||
isResetDisabled={!hiresFix}
|
||||
/>
|
||||
<Flex>
|
||||
<SubItemHook active={hiresFix} />
|
||||
<IAISlider
|
||||
label={t('parameters:hiresStrength')}
|
||||
step={0.01}
|
||||
min={0.01}
|
||||
max={0.99}
|
||||
onChange={handleHiresStrength}
|
||||
value={hiresStrength}
|
||||
isInteger={false}
|
||||
withInput
|
||||
withSliderMarks
|
||||
inputWidth={'5.5rem'}
|
||||
withReset
|
||||
handleReset={handleHiResStrengthReset}
|
||||
isSliderDisabled={!hiresFix}
|
||||
isInputDisabled={!hiresFix}
|
||||
isResetDisabled={!hiresFix}
|
||||
sliderMarkRightOffset={-7}
|
||||
/>
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
||||
@ -75,7 +80,7 @@ const HiresSettings = () => {
|
||||
dispatch(setHiresFix(e.target.checked));
|
||||
|
||||
return (
|
||||
<Flex gap={2} direction="column">
|
||||
<Flex rowGap="0.8rem" direction={'column'}>
|
||||
<IAISwitch
|
||||
label={t('parameters:hiresOptim')}
|
||||
fontSize="md"
|
||||
|
@ -1,6 +1,6 @@
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAINumberInput from 'common/components/IAINumberInput';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setPerlin } from 'features/parameters/store/generationSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
@ -9,17 +9,18 @@ export default function Perlin() {
|
||||
const perlin = useAppSelector((state: RootState) => state.generation.perlin);
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChangePerlin = (v: number) => dispatch(setPerlin(v));
|
||||
|
||||
return (
|
||||
<IAINumberInput
|
||||
<IAISlider
|
||||
label={t('parameters:perlinNoise')}
|
||||
min={0}
|
||||
max={1}
|
||||
step={0.05}
|
||||
onChange={handleChangePerlin}
|
||||
onChange={(v) => dispatch(setPerlin(v))}
|
||||
handleReset={() => dispatch(setPerlin(0))}
|
||||
value={perlin}
|
||||
isInteger={false}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
@ -1,6 +1,6 @@
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAINumberInput from 'common/components/IAINumberInput';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setThreshold } from 'features/parameters/store/generationSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
@ -11,17 +11,19 @@ export default function Threshold() {
|
||||
);
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChangeThreshold = (v: number) => dispatch(setThreshold(v));
|
||||
|
||||
return (
|
||||
<IAINumberInput
|
||||
<IAISlider
|
||||
label={t('parameters:noiseThreshold')}
|
||||
min={0}
|
||||
max={1000}
|
||||
step={0.1}
|
||||
onChange={handleChangeThreshold}
|
||||
max={1}
|
||||
step={0.005}
|
||||
onChange={(v) => dispatch(setThreshold(v))}
|
||||
handleReset={() => dispatch(setThreshold(0))}
|
||||
value={threshold}
|
||||
isInteger={false}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
inputWidth="6rem"
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
@ -0,0 +1,38 @@
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setUpscalingDenoising } from 'features/parameters/store/postprocessingSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function UpscaleDenoisingStrength() {
|
||||
const isESRGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isESRGANAvailable
|
||||
);
|
||||
|
||||
const upscalingDenoising = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.upscalingDenoising
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={t('parameters:denoisingStrength')}
|
||||
value={upscalingDenoising}
|
||||
min={0}
|
||||
max={1}
|
||||
step={0.01}
|
||||
onChange={(v) => {
|
||||
dispatch(setUpscalingDenoising(v));
|
||||
}}
|
||||
handleReset={() => dispatch(setUpscalingDenoising(0.75))}
|
||||
withSliderMarks
|
||||
withInput
|
||||
withReset
|
||||
isSliderDisabled={!isESRGANAvailable}
|
||||
isInputDisabled={!isESRGANAvailable}
|
||||
isResetDisabled={!isESRGANAvailable}
|
||||
/>
|
||||
);
|
||||
}
|
@ -0,0 +1,36 @@
|
||||
import { UPSCALING_LEVELS } from 'app/constants';
|
||||
import type { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAISelect from 'common/components/IAISelect';
|
||||
import {
|
||||
setUpscalingLevel,
|
||||
type UpscalingLevel,
|
||||
} from 'features/parameters/store/postprocessingSlice';
|
||||
import type { ChangeEvent } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function UpscaleScale() {
|
||||
const isESRGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isESRGANAvailable
|
||||
);
|
||||
|
||||
const upscalingLevel = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.upscalingLevel
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleChangeLevel = (e: ChangeEvent<HTMLSelectElement>) =>
|
||||
dispatch(setUpscalingLevel(Number(e.target.value) as UpscalingLevel));
|
||||
|
||||
return (
|
||||
<IAISelect
|
||||
isDisabled={!isESRGANAvailable}
|
||||
label={t('parameters:scale')}
|
||||
value={upscalingLevel}
|
||||
onChange={handleChangeLevel}
|
||||
validValues={UPSCALING_LEVELS}
|
||||
/>
|
||||
);
|
||||
}
|
@ -1,104 +1,17 @@
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
|
||||
import {
|
||||
setUpscalingDenoising,
|
||||
setUpscalingLevel,
|
||||
setUpscalingStrength,
|
||||
UpscalingLevel,
|
||||
} from 'features/parameters/store/postprocessingSlice';
|
||||
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { UPSCALING_LEVELS } from 'app/constants';
|
||||
import IAISelect from 'common/components/IAISelect';
|
||||
import { postprocessingSelector } from 'features/parameters/store/postprocessingSelectors';
|
||||
import { systemSelector } from 'features/system/store/systemSelectors';
|
||||
import { isEqual } from 'lodash';
|
||||
import { ChangeEvent } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
|
||||
const parametersSelector = createSelector(
|
||||
[postprocessingSelector, systemSelector],
|
||||
|
||||
(
|
||||
{ upscalingLevel, upscalingStrength, upscalingDenoising },
|
||||
{ isESRGANAvailable }
|
||||
) => {
|
||||
return {
|
||||
upscalingLevel,
|
||||
upscalingDenoising,
|
||||
upscalingStrength,
|
||||
isESRGANAvailable,
|
||||
};
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
);
|
||||
import UpscaleDenoisingStrength from './UpscaleDenoisingStrength';
|
||||
import UpscaleStrength from './UpscaleStrength';
|
||||
import UpscaleScale from './UpscaleScale';
|
||||
|
||||
/**
|
||||
* Displays upscaling/ESRGAN options (level and strength).
|
||||
*/
|
||||
const UpscaleSettings = () => {
|
||||
const dispatch = useAppDispatch();
|
||||
const {
|
||||
upscalingLevel,
|
||||
upscalingStrength,
|
||||
upscalingDenoising,
|
||||
isESRGANAvailable,
|
||||
} = useAppSelector(parametersSelector);
|
||||
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChangeLevel = (e: ChangeEvent<HTMLSelectElement>) =>
|
||||
dispatch(setUpscalingLevel(Number(e.target.value) as UpscalingLevel));
|
||||
|
||||
const handleChangeStrength = (v: number) => dispatch(setUpscalingStrength(v));
|
||||
|
||||
return (
|
||||
<Flex flexDir="column" rowGap="1rem" minWidth="20rem">
|
||||
<IAISelect
|
||||
isDisabled={!isESRGANAvailable}
|
||||
label={t('parameters:scale')}
|
||||
value={upscalingLevel}
|
||||
onChange={handleChangeLevel}
|
||||
validValues={UPSCALING_LEVELS}
|
||||
/>
|
||||
<IAISlider
|
||||
label={t('parameters:denoisingStrength')}
|
||||
value={upscalingDenoising}
|
||||
min={0}
|
||||
max={1}
|
||||
step={0.01}
|
||||
onChange={(v) => {
|
||||
dispatch(setUpscalingDenoising(v));
|
||||
}}
|
||||
handleReset={() => dispatch(setUpscalingDenoising(0.75))}
|
||||
withSliderMarks
|
||||
withInput
|
||||
withReset
|
||||
isSliderDisabled={!isESRGANAvailable}
|
||||
isInputDisabled={!isESRGANAvailable}
|
||||
isResetDisabled={!isESRGANAvailable}
|
||||
/>
|
||||
<IAISlider
|
||||
label={`${t('parameters:upscale')} ${t('parameters:strength')}`}
|
||||
value={upscalingStrength}
|
||||
min={0}
|
||||
max={1}
|
||||
step={0.05}
|
||||
onChange={handleChangeStrength}
|
||||
handleReset={() => dispatch(setUpscalingStrength(0.75))}
|
||||
withSliderMarks
|
||||
withInput
|
||||
withReset
|
||||
isSliderDisabled={!isESRGANAvailable}
|
||||
isInputDisabled={!isESRGANAvailable}
|
||||
isResetDisabled={!isESRGANAvailable}
|
||||
/>
|
||||
<Flex flexDir="column" rowGap={2} minWidth="20rem">
|
||||
<UpscaleScale />
|
||||
<UpscaleDenoisingStrength />
|
||||
<UpscaleStrength />
|
||||
</Flex>
|
||||
);
|
||||
};
|
||||
|
@ -0,0 +1,35 @@
|
||||
import type { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setUpscalingStrength } from 'features/parameters/store/postprocessingSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function UpscaleStrength() {
|
||||
const isESRGANAvailable = useAppSelector(
|
||||
(state: RootState) => state.system.isESRGANAvailable
|
||||
);
|
||||
const upscalingStrength = useAppSelector(
|
||||
(state: RootState) => state.postprocessing.upscalingStrength
|
||||
);
|
||||
|
||||
const { t } = useTranslation();
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
return (
|
||||
<IAISlider
|
||||
label={`${t('parameters:upscale')} ${t('parameters:strength')}`}
|
||||
value={upscalingStrength}
|
||||
min={0}
|
||||
max={1}
|
||||
step={0.05}
|
||||
onChange={(v) => dispatch(setUpscalingStrength(v))}
|
||||
handleReset={() => dispatch(setUpscalingStrength(0.75))}
|
||||
withSliderMarks
|
||||
withInput
|
||||
withReset
|
||||
isSliderDisabled={!isESRGANAvailable}
|
||||
isInputDisabled={!isESRGANAvailable}
|
||||
isResetDisabled={!isESRGANAvailable}
|
||||
/>
|
||||
);
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAINumberInput from 'common/components/IAINumberInput';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setVariationAmount } from 'features/parameters/store/generationSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
@ -16,19 +16,22 @@ export default function VariationAmount() {
|
||||
const { t } = useTranslation();
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const handleChangevariationAmount = (v: number) =>
|
||||
dispatch(setVariationAmount(v));
|
||||
|
||||
return (
|
||||
<IAINumberInput
|
||||
<IAISlider
|
||||
label={t('parameters:variationAmount')}
|
||||
value={variationAmount}
|
||||
step={0.01}
|
||||
min={0}
|
||||
max={1}
|
||||
isDisabled={!shouldGenerateVariations}
|
||||
onChange={handleChangevariationAmount}
|
||||
isInteger={false}
|
||||
isSliderDisabled={!shouldGenerateVariations}
|
||||
isInputDisabled={!shouldGenerateVariations}
|
||||
isResetDisabled={!shouldGenerateVariations}
|
||||
onChange={(v) => dispatch(setVariationAmount(v))}
|
||||
handleReset={() => dispatch(setVariationAmount(0.1))}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
@ -1,6 +1,7 @@
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAINumberInput from 'common/components/IAINumberInput';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setCfgScale } from 'features/parameters/store/generationSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
@ -9,11 +10,29 @@ export default function MainCFGScale() {
|
||||
const cfgScale = useAppSelector(
|
||||
(state: RootState) => state.generation.cfgScale
|
||||
);
|
||||
const shouldUseSliders = useAppSelector(
|
||||
(state: RootState) => state.ui.shouldUseSliders
|
||||
);
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChangeCfgScale = (v: number) => dispatch(setCfgScale(v));
|
||||
|
||||
return (
|
||||
return shouldUseSliders ? (
|
||||
<IAISlider
|
||||
label={t('parameters:cfgScale')}
|
||||
step={0.5}
|
||||
min={1.01}
|
||||
max={30}
|
||||
onChange={handleChangeCfgScale}
|
||||
handleReset={() => dispatch(setCfgScale(7.5))}
|
||||
value={cfgScale}
|
||||
sliderMarkRightOffset={-5}
|
||||
sliderNumberInputProps={{ max: 200 }}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
/>
|
||||
) : (
|
||||
<IAINumberInput
|
||||
label={t('parameters:cfgScale')}
|
||||
step={0.5}
|
||||
|
@ -2,29 +2,50 @@ import { HEIGHTS } from 'app/constants';
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAISelect from 'common/components/IAISelect';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setHeight } from 'features/parameters/store/generationSlice';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { ChangeEvent } from 'react';
|
||||
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function MainHeight() {
|
||||
const height = useAppSelector((state: RootState) => state.generation.height);
|
||||
const shouldUseSliders = useAppSelector(
|
||||
(state: RootState) => state.ui.shouldUseSliders
|
||||
);
|
||||
const activeTabName = useAppSelector(activeTabNameSelector);
|
||||
const dispatch = useAppDispatch();
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChangeHeight = (e: ChangeEvent<HTMLSelectElement>) =>
|
||||
dispatch(setHeight(Number(e.target.value)));
|
||||
|
||||
return (
|
||||
return shouldUseSliders ? (
|
||||
<IAISlider
|
||||
isSliderDisabled={activeTabName === 'unifiedCanvas'}
|
||||
isInputDisabled={activeTabName === 'unifiedCanvas'}
|
||||
isResetDisabled={activeTabName === 'unifiedCanvas'}
|
||||
label={t('parameters:height')}
|
||||
value={height}
|
||||
min={64}
|
||||
step={64}
|
||||
max={2048}
|
||||
onChange={(v) => dispatch(setHeight(v))}
|
||||
handleReset={() => dispatch(setHeight(512))}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
sliderMarkRightOffset={-8}
|
||||
inputWidth="6.2rem"
|
||||
sliderNumberInputProps={{ max: 15360 }}
|
||||
/>
|
||||
) : (
|
||||
<IAISelect
|
||||
isDisabled={activeTabName === 'unifiedCanvas'}
|
||||
label={t('parameters:height')}
|
||||
value={height}
|
||||
flexGrow={1}
|
||||
onChange={handleChangeHeight}
|
||||
onChange={(e) => dispatch(setHeight(Number(e.target.value)))}
|
||||
validValues={HEIGHTS}
|
||||
styleClass="main-settings-block"
|
||||
width="5.5rem"
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
@ -1,39 +1,41 @@
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import type { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAINumberInput from 'common/components/IAINumberInput';
|
||||
import {
|
||||
GenerationState,
|
||||
setIterations,
|
||||
} from 'features/parameters/store/generationSlice';
|
||||
import { isEqual } from 'lodash';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setIterations } from 'features/parameters/store/generationSlice';
|
||||
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
const mainIterationsSelector = createSelector(
|
||||
[(state: RootState) => state.generation],
|
||||
(parameters: GenerationState) => {
|
||||
const { iterations } = parameters;
|
||||
|
||||
return {
|
||||
iterations,
|
||||
};
|
||||
},
|
||||
{
|
||||
memoizeOptions: {
|
||||
resultEqualityCheck: isEqual,
|
||||
},
|
||||
}
|
||||
);
|
||||
|
||||
export default function MainIterations() {
|
||||
const iterations = useAppSelector(
|
||||
(state: RootState) => state.generation.iterations
|
||||
);
|
||||
|
||||
const shouldUseSliders = useAppSelector(
|
||||
(state: RootState) => state.ui.shouldUseSliders
|
||||
);
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
const { iterations } = useAppSelector(mainIterationsSelector);
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChangeIterations = (v: number) => dispatch(setIterations(v));
|
||||
|
||||
return (
|
||||
return shouldUseSliders ? (
|
||||
<IAISlider
|
||||
label={t('parameters:images')}
|
||||
step={1}
|
||||
min={1}
|
||||
max={16}
|
||||
onChange={handleChangeIterations}
|
||||
handleReset={() => dispatch(setIterations(1))}
|
||||
value={iterations}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
sliderMarkRightOffset={-5}
|
||||
sliderNumberInputProps={{ max: 9999 }}
|
||||
/>
|
||||
) : (
|
||||
<IAINumberInput
|
||||
label={t('parameters:images')}
|
||||
step={1}
|
||||
|
@ -1,3 +1,8 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import { type RootState } from 'app/store';
|
||||
import { useAppSelector } from 'app/storeHooks';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import ParametersAccordion from '../ParametersAccordion';
|
||||
import MainCFGScale from './MainCFGScale';
|
||||
import MainHeight from './MainHeight';
|
||||
import MainIterations from './MainIterations';
|
||||
@ -8,20 +13,40 @@ import MainWidth from './MainWidth';
|
||||
export const inputWidth = 'auto';
|
||||
|
||||
export default function MainSettings() {
|
||||
return (
|
||||
<div className="main-settings">
|
||||
<div className="main-settings-list">
|
||||
<div className="main-settings-row">
|
||||
const { t } = useTranslation();
|
||||
|
||||
const shouldUseSliders = useAppSelector(
|
||||
(state: RootState) => state.ui.shouldUseSliders
|
||||
);
|
||||
|
||||
const accordionItems = {
|
||||
main: {
|
||||
header: `${t('parameters:general')}`,
|
||||
feature: undefined,
|
||||
content: shouldUseSliders ? (
|
||||
<Flex flexDir="column" rowGap={2}>
|
||||
<MainIterations />
|
||||
<MainSteps />
|
||||
<MainCFGScale />
|
||||
</div>
|
||||
<div className="main-settings-row">
|
||||
<MainWidth />
|
||||
<MainHeight />
|
||||
<MainSampler />
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
</Flex>
|
||||
) : (
|
||||
<Flex flexDirection="column" rowGap={2}>
|
||||
<Flex gap={2}>
|
||||
<MainIterations />
|
||||
<MainSteps />
|
||||
<MainCFGScale />
|
||||
</Flex>
|
||||
<Flex>
|
||||
<MainWidth />
|
||||
<MainHeight />
|
||||
<MainSampler />
|
||||
</Flex>
|
||||
</Flex>
|
||||
),
|
||||
},
|
||||
};
|
||||
return <ParametersAccordion accordionInfo={accordionItems} />;
|
||||
}
|
||||
|
@ -27,6 +27,7 @@ export default function MainSampler() {
|
||||
activeModel.format === 'diffusers' ? DIFFUSERS_SAMPLERS : SAMPLERS
|
||||
}
|
||||
styleClass="main-settings-block"
|
||||
minWidth="9rem"
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
@ -1,17 +1,36 @@
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAINumberInput from 'common/components/IAINumberInput';
|
||||
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setSteps } from 'features/parameters/store/generationSlice';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function MainSteps() {
|
||||
const dispatch = useAppDispatch();
|
||||
const steps = useAppSelector((state: RootState) => state.generation.steps);
|
||||
const shouldUseSliders = useAppSelector(
|
||||
(state: RootState) => state.ui.shouldUseSliders
|
||||
);
|
||||
const { t } = useTranslation();
|
||||
|
||||
const handleChangeSteps = (v: number) => dispatch(setSteps(v));
|
||||
|
||||
return (
|
||||
return shouldUseSliders ? (
|
||||
<IAISlider
|
||||
label={t('parameters:steps')}
|
||||
min={1}
|
||||
step={1}
|
||||
onChange={handleChangeSteps}
|
||||
handleReset={() => dispatch(setSteps(20))}
|
||||
value={steps}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
sliderMarkRightOffset={-6}
|
||||
sliderNumberInputProps={{ max: 9999 }}
|
||||
/>
|
||||
) : (
|
||||
<IAINumberInput
|
||||
label={t('parameters:steps')}
|
||||
min={1}
|
||||
|
@ -2,30 +2,51 @@ import { WIDTHS } from 'app/constants';
|
||||
import { RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAISelect from 'common/components/IAISelect';
|
||||
import IAISlider from 'common/components/IAISlider';
|
||||
import { setWidth } from 'features/parameters/store/generationSlice';
|
||||
import { activeTabNameSelector } from 'features/ui/store/uiSelectors';
|
||||
import { ChangeEvent } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function MainWidth() {
|
||||
const width = useAppSelector((state: RootState) => state.generation.width);
|
||||
const shouldUseSliders = useAppSelector(
|
||||
(state: RootState) => state.ui.shouldUseSliders
|
||||
);
|
||||
const activeTabName = useAppSelector(activeTabNameSelector);
|
||||
const { t } = useTranslation();
|
||||
|
||||
const dispatch = useAppDispatch();
|
||||
|
||||
const handleChangeWidth = (e: ChangeEvent<HTMLSelectElement>) =>
|
||||
dispatch(setWidth(Number(e.target.value)));
|
||||
|
||||
return (
|
||||
return shouldUseSliders ? (
|
||||
<IAISlider
|
||||
isSliderDisabled={activeTabName === 'unifiedCanvas'}
|
||||
isInputDisabled={activeTabName === 'unifiedCanvas'}
|
||||
isResetDisabled={activeTabName === 'unifiedCanvas'}
|
||||
label={t('parameters:width')}
|
||||
value={width}
|
||||
min={64}
|
||||
step={64}
|
||||
max={2048}
|
||||
onChange={(v) => dispatch(setWidth(v))}
|
||||
handleReset={() => dispatch(setWidth(512))}
|
||||
withInput
|
||||
withReset
|
||||
withSliderMarks
|
||||
sliderMarkRightOffset={-8}
|
||||
inputWidth="6.2rem"
|
||||
inputReadOnly
|
||||
sliderNumberInputProps={{ max: 15360 }}
|
||||
/>
|
||||
) : (
|
||||
<IAISelect
|
||||
isDisabled={activeTabName === 'unifiedCanvas'}
|
||||
label={t('parameters:width')}
|
||||
value={width}
|
||||
flexGrow={1}
|
||||
onChange={handleChangeWidth}
|
||||
onChange={(e) => dispatch(setWidth(Number(e.target.value)))}
|
||||
validValues={WIDTHS}
|
||||
styleClass="main-settings-block"
|
||||
width="5.5rem"
|
||||
/>
|
||||
);
|
||||
}
|
||||
|
@ -22,7 +22,7 @@ export interface PostprocessingState {
|
||||
|
||||
const initialPostprocessingState: PostprocessingState = {
|
||||
codeformerFidelity: 0.75,
|
||||
facetoolStrength: 0.8,
|
||||
facetoolStrength: 0.75,
|
||||
facetoolType: 'gfpgan',
|
||||
hiresFix: false,
|
||||
hiresStrength: 0.75,
|
||||
|
@ -14,7 +14,7 @@ import {
|
||||
} from '@chakra-ui/react';
|
||||
import { createSelector } from '@reduxjs/toolkit';
|
||||
import { IN_PROGRESS_IMAGE_TYPES } from 'app/constants';
|
||||
import { RootState } from 'app/store';
|
||||
import { type RootState } from 'app/store';
|
||||
import { useAppDispatch, useAppSelector } from 'app/storeHooks';
|
||||
import IAINumberInput from 'common/components/IAINumberInput';
|
||||
import IAISelect from 'common/components/IAISelect';
|
||||
@ -27,9 +27,14 @@ import {
|
||||
setShouldConfirmOnDelete,
|
||||
setShouldDisplayGuides,
|
||||
setShouldDisplayInProgressType,
|
||||
type SystemState,
|
||||
} from 'features/system/store/systemSlice';
|
||||
import { uiSelector } from 'features/ui/store/uiSelectors';
|
||||
import { setShouldUseCanvasBetaLayout } from 'features/ui/store/uiSlice';
|
||||
import {
|
||||
setShouldUseCanvasBetaLayout,
|
||||
setShouldUseSliders,
|
||||
} from 'features/ui/store/uiSlice';
|
||||
import { type UIState } from 'features/ui/store/uiTypes';
|
||||
import { isEqual, map } from 'lodash';
|
||||
import { persistor } from 'persistor';
|
||||
import { ChangeEvent, cloneElement, ReactElement } from 'react';
|
||||
@ -37,7 +42,7 @@ import { useTranslation } from 'react-i18next';
|
||||
|
||||
const selector = createSelector(
|
||||
[systemSelector, uiSelector],
|
||||
(system, ui) => {
|
||||
(system: SystemState, ui: UIState) => {
|
||||
const {
|
||||
shouldDisplayInProgressType,
|
||||
shouldConfirmOnDelete,
|
||||
@ -47,7 +52,7 @@ const selector = createSelector(
|
||||
enableImageDebugging,
|
||||
} = system;
|
||||
|
||||
const { shouldUseCanvasBetaLayout } = ui;
|
||||
const { shouldUseCanvasBetaLayout, shouldUseSliders } = ui;
|
||||
|
||||
return {
|
||||
shouldDisplayInProgressType,
|
||||
@ -57,6 +62,7 @@ const selector = createSelector(
|
||||
saveIntermediatesInterval,
|
||||
enableImageDebugging,
|
||||
shouldUseCanvasBetaLayout,
|
||||
shouldUseSliders,
|
||||
};
|
||||
},
|
||||
{
|
||||
@ -100,6 +106,7 @@ const SettingsModal = ({ children }: SettingsModalProps) => {
|
||||
saveIntermediatesInterval,
|
||||
enableImageDebugging,
|
||||
shouldUseCanvasBetaLayout,
|
||||
shouldUseSliders,
|
||||
} = useAppSelector(selector);
|
||||
|
||||
/**
|
||||
@ -191,6 +198,14 @@ const SettingsModal = ({ children }: SettingsModalProps) => {
|
||||
dispatch(setShouldUseCanvasBetaLayout(e.target.checked))
|
||||
}
|
||||
/>
|
||||
<IAISwitch
|
||||
styleClass="settings-modal-item"
|
||||
label={t('settings:useSlidersForAll')}
|
||||
isChecked={shouldUseSliders}
|
||||
onChange={(e: ChangeEvent<HTMLInputElement>) =>
|
||||
dispatch(setShouldUseSliders(e.target.checked))
|
||||
}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="settings-modal-items">
|
||||
|
@ -0,0 +1,26 @@
|
||||
import { Flex } from '@chakra-ui/react';
|
||||
import ImageFit from 'features/parameters/components/AdvancedParameters/ImageToImage/ImageFit';
|
||||
import ImageToImageStrength from 'features/parameters/components/AdvancedParameters/ImageToImage/ImageToImageStrength';
|
||||
import ParametersAccordion from 'features/parameters/components/ParametersAccordion';
|
||||
|
||||
import { useTranslation } from 'react-i18next';
|
||||
|
||||
export default function ImageToImageOptions() {
|
||||
const { t } = useTranslation();
|
||||
const imageToImageAccordionItems = {
|
||||
imageToImage: {
|
||||
header: `${t('parameters:imageToImage')}`,
|
||||
feature: undefined,
|
||||
content: (
|
||||
<Flex gap={2} flexDir="column">
|
||||
<ImageToImageStrength
|
||||
label={t('parameters:img2imgStrength')}
|
||||
styleClass="main-settings-block image-to-image-strength-main-option"
|
||||
/>
|
||||
<ImageFit />
|
||||
</Flex>
|
||||
),
|
||||
},
|
||||
};
|
||||
return <ParametersAccordion accordionInfo={imageToImageAccordionItems} />;
|
||||
}
|
@ -2,8 +2,6 @@ import { Flex } from '@chakra-ui/react';
|
||||
import { Feature } from 'app/features';
|
||||
import FaceRestoreSettings from 'features/parameters/components/AdvancedParameters/FaceRestore/FaceRestoreSettings';
|
||||
import FaceRestoreToggle from 'features/parameters/components/AdvancedParameters/FaceRestore/FaceRestoreToggle';
|
||||
import ImageFit from 'features/parameters/components/AdvancedParameters/ImageToImage/ImageFit';
|
||||
import ImageToImageStrength from 'features/parameters/components/AdvancedParameters/ImageToImage/ImageToImageStrength';
|
||||
import ImageToImageOutputSettings from 'features/parameters/components/AdvancedParameters/Output/ImageToImageOutputSettings';
|
||||
import SeedSettings from 'features/parameters/components/AdvancedParameters/Seed/SeedSettings';
|
||||
import UpscaleSettings from 'features/parameters/components/AdvancedParameters/Upscale/UpscaleSettings';
|
||||
@ -17,6 +15,7 @@ import NegativePromptInput from 'features/parameters/components/PromptInput/Nega
|
||||
import PromptInput from 'features/parameters/components/PromptInput/PromptInput';
|
||||
import InvokeOptionsPanel from 'features/ui/components/InvokeParametersPanel';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import ImageToImageOptions from './ImageToImageOptions';
|
||||
|
||||
export default function ImageToImagePanel() {
|
||||
const { t } = useTranslation();
|
||||
@ -60,11 +59,7 @@ export default function ImageToImagePanel() {
|
||||
</Flex>
|
||||
<ProcessButtons />
|
||||
<MainSettings />
|
||||
<ImageToImageStrength
|
||||
label={t('parameters:img2imgStrength')}
|
||||
styleClass="main-settings-block image-to-image-strength-main-option"
|
||||
/>
|
||||
<ImageFit />
|
||||
<ImageToImageOptions />
|
||||
<ParametersAccordion accordionInfo={imageToImageAccordions} />
|
||||
</InvokeOptionsPanel>
|
||||
);
|
||||
|
@ -32,7 +32,7 @@
|
||||
.parameters-panel {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
row-gap: 1rem;
|
||||
row-gap: 0.5rem;
|
||||
height: 100%;
|
||||
@include HideScrollbar;
|
||||
background-color: var(--background-color);
|
||||
|
@ -20,6 +20,11 @@ export default function UnifiedCanvasPanel() {
|
||||
const { t } = useTranslation();
|
||||
|
||||
const unifiedCanvasAccordions = {
|
||||
seed: {
|
||||
header: `${t('parameters:seed')}`,
|
||||
feature: Feature.SEED,
|
||||
content: <SeedSettings />,
|
||||
},
|
||||
boundingBox: {
|
||||
header: `${t('parameters:boundingBoxHeader')}`,
|
||||
feature: Feature.BOUNDING_BOX,
|
||||
@ -35,11 +40,6 @@ export default function UnifiedCanvasPanel() {
|
||||
feature: Feature.INFILL_AND_SCALING,
|
||||
content: <InfillAndScalingSettings />,
|
||||
},
|
||||
seed: {
|
||||
header: `${t('parameters:seed')}`,
|
||||
feature: Feature.SEED,
|
||||
content: <SeedSettings />,
|
||||
},
|
||||
variations: {
|
||||
header: `${t('parameters:variations')}`,
|
||||
feature: Feature.VARIATIONS,
|
||||
@ -48,6 +48,19 @@ export default function UnifiedCanvasPanel() {
|
||||
},
|
||||
};
|
||||
|
||||
const unifiedCanvasImg2ImgAccordion = {
|
||||
unifiedCanvasImg2Img: {
|
||||
header: `${t('parameters:imageToImage')}`,
|
||||
feature: undefined,
|
||||
content: (
|
||||
<ImageToImageStrength
|
||||
label={t('parameters:img2imgStrength')}
|
||||
styleClass="main-settings-block image-to-image-strength-main-option"
|
||||
/>
|
||||
),
|
||||
},
|
||||
};
|
||||
|
||||
return (
|
||||
<InvokeOptionsPanel>
|
||||
<Flex flexDir="column" rowGap="0.5rem">
|
||||
@ -56,10 +69,7 @@ export default function UnifiedCanvasPanel() {
|
||||
</Flex>
|
||||
<ProcessButtons />
|
||||
<MainSettings />
|
||||
<ImageToImageStrength
|
||||
label={t('parameters:img2imgStrength')}
|
||||
styleClass="main-settings-block image-to-image-strength-main-option"
|
||||
/>
|
||||
<ParametersAccordion accordionInfo={unifiedCanvasImg2ImgAccordion} />
|
||||
<ParametersAccordion accordionInfo={unifiedCanvasAccordions} />
|
||||
</InvokeOptionsPanel>
|
||||
);
|
||||
|
@ -14,6 +14,7 @@ const initialtabsState: UIState = {
|
||||
shouldShowImageDetails: false,
|
||||
shouldUseCanvasBetaLayout: false,
|
||||
shouldShowExistingModelsInSearch: false,
|
||||
shouldUseSliders: false,
|
||||
addNewModelUIOption: null,
|
||||
};
|
||||
|
||||
@ -66,6 +67,9 @@ export const uiSlice = createSlice({
|
||||
) => {
|
||||
state.shouldShowExistingModelsInSearch = action.payload;
|
||||
},
|
||||
setShouldUseSliders: (state, action: PayloadAction<boolean>) => {
|
||||
state.shouldUseSliders = action.payload;
|
||||
},
|
||||
setAddNewModelUIOption: (state, action: PayloadAction<AddNewModelType>) => {
|
||||
state.addNewModelUIOption = action.payload;
|
||||
},
|
||||
@ -83,6 +87,7 @@ export const {
|
||||
setShouldShowImageDetails,
|
||||
setShouldUseCanvasBetaLayout,
|
||||
setShouldShowExistingModelsInSearch,
|
||||
setShouldUseSliders,
|
||||
setAddNewModelUIOption,
|
||||
} = uiSlice.actions;
|
||||
|
||||
|
@ -11,5 +11,6 @@ export interface UIState {
|
||||
shouldShowImageDetails: boolean;
|
||||
shouldUseCanvasBetaLayout: boolean;
|
||||
shouldShowExistingModelsInSearch: boolean;
|
||||
shouldUseSliders: boolean;
|
||||
addNewModelUIOption: AddNewModelType;
|
||||
}
|
||||
|
@ -137,4 +137,7 @@
|
||||
// Scrollbar
|
||||
--scrollbar-color: var(--accent-color);
|
||||
--scrollbar-color-hover: var(--accent-color-bright);
|
||||
|
||||
// SubHook
|
||||
--subhook-color: var(--accent-color);
|
||||
}
|
||||
|
@ -135,4 +135,7 @@
|
||||
// Scrollbar
|
||||
--scrollbar-color: var(--accent-color);
|
||||
--scrollbar-color-hover: var(--accent-color-bright);
|
||||
|
||||
// SubHook
|
||||
--subhook-color: var(--accent-color);
|
||||
}
|
||||
|
@ -132,4 +132,7 @@
|
||||
// Scrollbar
|
||||
--scrollbar-color: rgb(180, 180, 184);
|
||||
--scrollbar-color-hover: rgb(150, 150, 154);
|
||||
|
||||
// SubHook
|
||||
--subhook-color: rgb(0, 0, 0);
|
||||
}
|
||||
|
File diff suppressed because one or more lines are too long
@ -5,7 +5,9 @@ import sys
|
||||
import traceback
|
||||
from argparse import Namespace
|
||||
from pathlib import Path
|
||||
from typing import Optional, Union
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import click
|
||||
|
||||
if sys.platform == "darwin":
|
||||
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
||||
@ -24,6 +26,7 @@ from ldm.invoke.model_manager import ModelManager
|
||||
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata, write_metadata
|
||||
from ldm.invoke.prompt_parser import PromptParser
|
||||
from ldm.invoke.readline import Completer, get_completer
|
||||
from ldm.util import url_attachment_name
|
||||
|
||||
# global used in multiple functions (fix)
|
||||
infile = None
|
||||
@ -78,7 +81,6 @@ def main():
|
||||
import transformers # type: ignore
|
||||
|
||||
from ldm.generate import Generate
|
||||
|
||||
transformers.logging.set_verbosity_error()
|
||||
import diffusers
|
||||
|
||||
@ -623,10 +625,11 @@ def set_default_output_dir(opt: Args, completer: Completer):
|
||||
|
||||
|
||||
def import_model(model_path: str, gen, opt, completer):
|
||||
model_path can be (1) a URL to a .ckpt file; (2) a local .ckpt file path;
|
||||
(3) a huggingface repository id; or (4) a local directory containing a
|
||||
diffusers model.
|
||||
"""
|
||||
model_path can be (1) a URL to a .ckpt file; (2) a local .ckpt file path; or
|
||||
(3) a huggingface repository id
|
||||
"""
|
||||
model.path = model_path.replace('\\','/') # windows
|
||||
model_name = None
|
||||
|
||||
if model_path.startswith(("http:", "https:", "ftp:")):
|
||||
@ -669,7 +672,7 @@ def import_model(model_path: str, gen, opt, completer):
|
||||
print("** model failed to load. Discarding configuration entry")
|
||||
gen.model_manager.del_model(model_name)
|
||||
return
|
||||
if input("Make this the default model? [n] ").strip() in ("y", "Y"):
|
||||
if click.confirm('Make this the default model?', default=False):
|
||||
gen.model_manager.set_default_model(model_name)
|
||||
|
||||
gen.model_manager.commit(opt.conf)
|
||||
@ -677,9 +680,46 @@ def import_model(model_path: str, gen, opt, completer):
|
||||
print(f">> {model_name} successfully installed")
|
||||
|
||||
|
||||
def import_checkpoint_list(models: List[Path], gen, opt, completer)->List[str]:
|
||||
'''
|
||||
Does a mass import of all the checkpoint/safetensors on a path list
|
||||
'''
|
||||
model_names = list()
|
||||
choice = input('** Directory of checkpoint/safetensors models detected. Install <a>ll or <s>elected models? [a] ') or 'a'
|
||||
do_all = choice.startswith('a')
|
||||
if do_all:
|
||||
config_file = _ask_for_config_file(models[0], completer, plural=True)
|
||||
manager = gen.model_manager
|
||||
for model in sorted(models):
|
||||
model_name = f'{model.stem}'
|
||||
model_description = f'Imported model {model_name}'
|
||||
if model_name in manager.model_names():
|
||||
print(f'** {model_name} is already imported. Skipping.')
|
||||
elif manager.import_ckpt_model(
|
||||
model,
|
||||
config = config_file,
|
||||
model_name = model_name,
|
||||
model_description = model_description,
|
||||
commit_to_conf = opt.conf):
|
||||
model_names.append(model_name)
|
||||
print(f'>> Model {model_name} imported successfully')
|
||||
else:
|
||||
print(f'** Model {model} failed to import')
|
||||
else:
|
||||
for model in sorted(models):
|
||||
if click.confirm(f'Import {model.stem} ?', default=True):
|
||||
if model_name := import_ckpt_model(model, gen, opt, completer):
|
||||
print(f'>> Model {model.stem} imported successfully')
|
||||
model_names.append(model_name)
|
||||
else:
|
||||
printf('** Model {model} failed to import')
|
||||
print()
|
||||
return model_names
|
||||
|
||||
def import_diffuser_model(
|
||||
path_or_repo: Union[Path, str], gen, _, completer
|
||||
) -> Optional[str]:
|
||||
path_or_repo = path_or_repo.replace('\\','/') # windows
|
||||
manager = gen.model_manager
|
||||
default_name = Path(path_or_repo).stem
|
||||
default_description = f"Imported model {default_name}"
|
||||
@ -690,10 +730,8 @@ def import_diffuser_model(
|
||||
model_description=default_description,
|
||||
)
|
||||
vae = None
|
||||
if input(
|
||||
'Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"? [n] '
|
||||
).strip() in ("y", "Y"):
|
||||
vae = dict(repo_id="stabilityai/sd-vae-ft-mse")
|
||||
if click.confirm('Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"?', default=False):
|
||||
vae = dict(repo_id='stabilityai/sd-vae-ft-mse')
|
||||
|
||||
if not manager.import_diffuser_model(
|
||||
path_or_repo, model_name=model_name, vae=vae, description=model_description
|
||||
@ -702,13 +740,16 @@ def import_diffuser_model(
|
||||
return None
|
||||
return model_name
|
||||
|
||||
|
||||
def import_ckpt_model(
|
||||
path_or_url: Union[Path, str], gen, opt, completer
|
||||
) -> Optional[str]:
|
||||
path_or_url = path_or_url.replace('\\','/')
|
||||
manager = gen.model_manager
|
||||
default_name = Path(path_or_url).stem
|
||||
is_a_url = str(path_or_url).startswith(('http:','https:'))
|
||||
base_name = Path(url_attachment_name(path_or_url)).name if is_a_url else Path(path_or_url).name
|
||||
default_name = Path(base_name).stem
|
||||
default_description = f"Imported model {default_name}"
|
||||
|
||||
model_name, model_description = _get_model_name_and_desc(
|
||||
manager,
|
||||
completer,
|
||||
@ -758,10 +799,14 @@ def import_ckpt_model(
|
||||
def _verify_load(model_name: str, gen) -> bool:
|
||||
print(">> Verifying that new model loads...")
|
||||
current_model = gen.model_name
|
||||
if not gen.model_manager.get_model(model_name):
|
||||
try:
|
||||
if not gen.model_manager.get_model(model_name):
|
||||
return False
|
||||
except Exception as e:
|
||||
print(f'** model failed to load: {str(e)}')
|
||||
print('** note that importing 2.X checkpoints is not supported. Please use !convert_model instead.')
|
||||
return False
|
||||
do_switch = input("Keep model loaded? [y] ")
|
||||
if len(do_switch) == 0 or do_switch[0] in ("y", "Y"):
|
||||
if click.confirm('Keep model loaded?', default=True):
|
||||
gen.set_model(model_name)
|
||||
else:
|
||||
print(">> Restoring previous model")
|
||||
@ -780,18 +825,44 @@ def _get_model_name_and_desc(
|
||||
)
|
||||
return model_name, model_description
|
||||
|
||||
def _ask_for_config_file(model_path: Union[str,Path], completer, plural: bool=False)->Path:
|
||||
default = '1'
|
||||
if re.search('inpaint',str(model_path),flags=re.IGNORECASE):
|
||||
default = '3'
|
||||
choices={
|
||||
'1': 'v1-inference.yaml',
|
||||
'2': 'v2-inference-v.yaml',
|
||||
'3': 'v1-inpainting-inference.yaml',
|
||||
}
|
||||
|
||||
prompt = '''What type of models are these?:
|
||||
[1] Models based on Stable Diffusion 1.X
|
||||
[2] Models based on Stable Diffusion 2.X
|
||||
[3] Inpainting models based on Stable Diffusion 1.X
|
||||
[4] Something else''' if plural else '''What type of model is this?:
|
||||
[1] A model based on Stable Diffusion 1.X
|
||||
[2] A model based on Stable Diffusion 2.X
|
||||
[3] An inpainting models based on Stable Diffusion 1.X
|
||||
[4] Something else'''
|
||||
print(prompt)
|
||||
choice = input(f'Your choice: [{default}] ')
|
||||
choice = choice.strip() or default
|
||||
if config_file := choices.get(choice,None):
|
||||
return Path('configs','stable-diffusion',config_file)
|
||||
|
||||
def _is_inpainting(model_name_or_path: str) -> bool:
|
||||
if re.search("inpaint", model_name_or_path, flags=re.IGNORECASE):
|
||||
return not input("Is this an inpainting model? [y] ").startswith(("n", "N"))
|
||||
else:
|
||||
return not input("Is this an inpainting model? [n] ").startswith(("y", "Y"))
|
||||
# otherwise ask user to select
|
||||
done = False
|
||||
completer.complete_extensions(('.yaml','.yml'))
|
||||
completer.set_line(str(Path(Globals.root,'configs/stable-diffusion/')))
|
||||
while not done:
|
||||
config_path = input('Configuration file for this model (leave blank to abort): ').strip()
|
||||
done = not config_path or os.path.exists(config_path)
|
||||
return config_path
|
||||
|
||||
|
||||
def optimize_model(model_name_or_path: str, gen, opt, completer):
|
||||
def optimize_model(model_name_or_path: Union[Path,str], gen, opt, completer):
|
||||
model_name_or_path = model_name_or_path.replace('\\','/') # windows
|
||||
manager = gen.model_manager
|
||||
ckpt_path = None
|
||||
original_config_file = None
|
||||
|
||||
if model_name_or_path == gen.model_name:
|
||||
print("** Can't convert the active model. !switch to another model first. **")
|
||||
@ -806,16 +877,13 @@ def optimize_model(model_name_or_path: str, gen, opt, completer):
|
||||
print(f"** {model_name_or_path} is not a legacy .ckpt weights file")
|
||||
return
|
||||
elif os.path.exists(model_name_or_path):
|
||||
original_config_file = original_config_file or _ask_for_config_file(model_name_or_path, completer)
|
||||
if not original_config_file:
|
||||
return
|
||||
ckpt_path = Path(model_name_or_path)
|
||||
model_name, model_description = _get_model_name_and_desc(
|
||||
manager, completer, ckpt_path.stem, f"Converted model {ckpt_path.stem}"
|
||||
)
|
||||
is_inpainting = _is_inpainting(model_name_or_path)
|
||||
original_config_file = Path(
|
||||
"configs",
|
||||
"stable-diffusion",
|
||||
"v1-inpainting-inference.yaml" if is_inpainting else "v1-inference.yaml",
|
||||
)
|
||||
else:
|
||||
print(
|
||||
f"** {model_name_or_path} is neither an existing model nor the path to a .ckpt file"
|
||||
@ -838,10 +906,8 @@ def optimize_model(model_name_or_path: str, gen, opt, completer):
|
||||
return
|
||||
|
||||
vae = None
|
||||
if input(
|
||||
'Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"? [n] '
|
||||
).strip() in ("y", "Y"):
|
||||
vae = dict(repo_id="stabilityai/sd-vae-ft-mse")
|
||||
if click.confirm('Replace this model\'s VAE with "stabilityai/sd-vae-ft-mse"?', default=False):
|
||||
vae = dict(repo_id='stabilityai/sd-vae-ft-mse')
|
||||
|
||||
new_config = gen.model_manager.convert_and_import(
|
||||
ckpt_path,
|
||||
@ -856,11 +922,10 @@ def optimize_model(model_name_or_path: str, gen, opt, completer):
|
||||
return
|
||||
|
||||
completer.update_models(gen.model_manager.list_models())
|
||||
if input(f"Load optimized model {model_name}? [y] ").strip() not in ("n", "N"):
|
||||
if click.confirm(f'Load optimized model {model_name}?', default=True):
|
||||
gen.set_model(model_name)
|
||||
|
||||
response = input(f"Delete the original .ckpt file at ({ckpt_path} ? [n] ")
|
||||
if response.startswith(("y", "Y")):
|
||||
if click.confirm(f'Delete the original .ckpt file at {ckpt_path}?',default=False):
|
||||
ckpt_path.unlink(missing_ok=True)
|
||||
print(f"{ckpt_path} deleted")
|
||||
|
||||
@ -874,17 +939,11 @@ def del_config(model_name: str, gen, opt, completer):
|
||||
print(f"** Unknown model {model_name}")
|
||||
return
|
||||
|
||||
if (
|
||||
input(f"Remove {model_name} from the list of models known to InvokeAI? [y] ")
|
||||
.strip()
|
||||
.startswith(("n", "N"))
|
||||
):
|
||||
if not click.confirm(f'Remove {model_name} from the list of models known to InvokeAI?',default=True):
|
||||
return
|
||||
|
||||
delete_completely = input(
|
||||
"Completely remove the model file or directory from disk? [n] "
|
||||
).startswith(("y", "Y"))
|
||||
gen.model_manager.del_model(model_name, delete_files=delete_completely)
|
||||
delete_completely = click.confirm('Completely remove the model file or directory from disk?',default=False)
|
||||
gen.model_manager.del_model(model_name,delete_files=delete_completely)
|
||||
gen.model_manager.commit(opt.conf)
|
||||
print(f"** {model_name} deleted")
|
||||
completer.update_models(gen.model_manager.list_models())
|
||||
@ -913,7 +972,7 @@ def edit_model(model_name: str, gen, opt, completer):
|
||||
# this does the update
|
||||
manager.add_model(new_name, info, True)
|
||||
|
||||
if input("Make this the default model? [n] ").startswith(("y", "Y")):
|
||||
if click.confirm('Make this the default model?',default=False):
|
||||
manager.set_default_model(new_name)
|
||||
manager.commit(opt.conf)
|
||||
completer.update_models(manager.list_models())
|
||||
@ -1288,10 +1347,7 @@ def report_model_error(opt: Namespace, e: Exception):
|
||||
"** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE"
|
||||
)
|
||||
else:
|
||||
response = input(
|
||||
"Do you want to run invokeai-configure script to select and/or reinstall models? [y] "
|
||||
)
|
||||
if response.startswith(("n", "N")):
|
||||
if click.confirm('Do you want to run invokeai-configure script to select and/or reinstall models?', default=True):
|
||||
return
|
||||
|
||||
print("invokeai-configure is launching....\n")
|
||||
|
@ -34,8 +34,8 @@ from ldm.invoke.generator.diffusers_pipeline import \
|
||||
StableDiffusionGeneratorPipeline
|
||||
from ldm.invoke.globals import (Globals, global_autoscan_dir, global_cache_dir,
|
||||
global_models_dir)
|
||||
from ldm.util import (ask_user, download_with_progress_bar,
|
||||
instantiate_from_config)
|
||||
from ldm.util import (ask_user, download_with_resume,
|
||||
url_attachment_name, instantiate_from_config)
|
||||
|
||||
DEFAULT_MAX_MODELS = 2
|
||||
VAE_TO_REPO_ID = { # hack, see note in convert_and_import()
|
||||
@ -673,15 +673,18 @@ class ModelManager(object):
|
||||
path to the configuration file, then the new entry will be committed to the
|
||||
models.yaml file.
|
||||
"""
|
||||
if str(weights).startswith(("http:", "https:")):
|
||||
model_name = model_name or url_attachment_name(weights)
|
||||
|
||||
weights_path = self._resolve_path(weights, "models/ldm/stable-diffusion-v1")
|
||||
config_path = self._resolve_path(config, "configs/stable-diffusion")
|
||||
config_path = self._resolve_path(config, "configs/stable-diffusion")
|
||||
|
||||
if weights_path is None or not weights_path.exists():
|
||||
return False
|
||||
if config_path is None or not config_path.exists():
|
||||
return False
|
||||
|
||||
model_name = model_name or Path(weights).stem
|
||||
model_name = model_name or Path(weights).stem # note this gives ugly pathnames if used on a URL without a Content-Disposition header
|
||||
model_description = (
|
||||
model_description or f"imported stable diffusion weights file {model_name}"
|
||||
)
|
||||
@ -971,16 +974,15 @@ class ModelManager(object):
|
||||
print("** Migration is done. Continuing...")
|
||||
|
||||
def _resolve_path(
|
||||
self, source: Union[str, Path], dest_directory: str
|
||||
self, source: Union[str, Path], dest_directory: str
|
||||
) -> Optional[Path]:
|
||||
resolved_path = None
|
||||
if str(source).startswith(("http:", "https:", "ftp:")):
|
||||
basename = os.path.basename(source)
|
||||
if not os.path.isabs(dest_directory):
|
||||
dest_directory = os.path.join(Globals.root, dest_directory)
|
||||
dest = os.path.join(dest_directory, basename)
|
||||
if download_with_progress_bar(str(source), Path(dest)):
|
||||
resolved_path = Path(dest)
|
||||
dest_directory = Path(dest_directory)
|
||||
if not dest_directory.is_absolute():
|
||||
dest_directory = Globals.root / dest_directory
|
||||
dest_directory.mkdir(parents=True, exist_ok=True)
|
||||
resolved_path = download_with_resume(str(source), dest_directory)
|
||||
else:
|
||||
if not os.path.isabs(source):
|
||||
source = os.path.join(Globals.root, source)
|
||||
|
238
ldm/util.py
238
ldm/util.py
@ -1,20 +1,21 @@
|
||||
import importlib
|
||||
import math
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import re
|
||||
from collections import abc
|
||||
from inspect import isfunction
|
||||
from pathlib import Path
|
||||
from queue import Queue
|
||||
from threading import Thread
|
||||
from urllib import request
|
||||
from tqdm import tqdm
|
||||
from pathlib import Path
|
||||
from ldm.invoke.devices import torch_dtype
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
import torch
|
||||
import os
|
||||
import traceback
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
from tqdm import tqdm
|
||||
|
||||
from ldm.invoke.devices import torch_dtype
|
||||
|
||||
|
||||
def log_txt_as_img(wh, xc, size=10):
|
||||
@ -23,18 +24,18 @@ def log_txt_as_img(wh, xc, size=10):
|
||||
b = len(xc)
|
||||
txts = list()
|
||||
for bi in range(b):
|
||||
txt = Image.new('RGB', wh, color='white')
|
||||
txt = Image.new("RGB", wh, color="white")
|
||||
draw = ImageDraw.Draw(txt)
|
||||
font = ImageFont.load_default()
|
||||
nc = int(40 * (wh[0] / 256))
|
||||
lines = '\n'.join(
|
||||
lines = "\n".join(
|
||||
xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc)
|
||||
)
|
||||
|
||||
try:
|
||||
draw.text((0, 0), lines, fill='black', font=font)
|
||||
draw.text((0, 0), lines, fill="black", font=font)
|
||||
except UnicodeEncodeError:
|
||||
print('Cant encode string for logging. Skipping.')
|
||||
print("Cant encode string for logging. Skipping.")
|
||||
|
||||
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
||||
txts.append(txt)
|
||||
@ -77,25 +78,23 @@ def count_params(model, verbose=False):
|
||||
total_params = sum(p.numel() for p in model.parameters())
|
||||
if verbose:
|
||||
print(
|
||||
f' | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
|
||||
f" | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params."
|
||||
)
|
||||
return total_params
|
||||
|
||||
|
||||
def instantiate_from_config(config, **kwargs):
|
||||
if not 'target' in config:
|
||||
if config == '__is_first_stage__':
|
||||
if not "target" in config:
|
||||
if config == "__is_first_stage__":
|
||||
return None
|
||||
elif config == '__is_unconditional__':
|
||||
elif config == "__is_unconditional__":
|
||||
return None
|
||||
raise KeyError('Expected key `target` to instantiate.')
|
||||
return get_obj_from_str(config['target'])(
|
||||
**config.get('params', dict()), **kwargs
|
||||
)
|
||||
raise KeyError("Expected key `target` to instantiate.")
|
||||
return get_obj_from_str(config["target"])(**config.get("params", dict()), **kwargs)
|
||||
|
||||
|
||||
def get_obj_from_str(string, reload=False):
|
||||
module, cls = string.rsplit('.', 1)
|
||||
module, cls = string.rsplit(".", 1)
|
||||
if reload:
|
||||
module_imp = importlib.import_module(module)
|
||||
importlib.reload(module_imp)
|
||||
@ -111,14 +110,14 @@ def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
|
||||
else:
|
||||
res = func(data)
|
||||
Q.put([idx, res])
|
||||
Q.put('Done')
|
||||
Q.put("Done")
|
||||
|
||||
|
||||
def parallel_data_prefetch(
|
||||
func: callable,
|
||||
data,
|
||||
n_proc,
|
||||
target_data_type='ndarray',
|
||||
target_data_type="ndarray",
|
||||
cpu_intensive=True,
|
||||
use_worker_id=False,
|
||||
):
|
||||
@ -126,21 +125,21 @@ def parallel_data_prefetch(
|
||||
# raise ValueError(
|
||||
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
|
||||
# )
|
||||
if isinstance(data, np.ndarray) and target_data_type == 'list':
|
||||
raise ValueError('list expected but function got ndarray.')
|
||||
if isinstance(data, np.ndarray) and target_data_type == "list":
|
||||
raise ValueError("list expected but function got ndarray.")
|
||||
elif isinstance(data, abc.Iterable):
|
||||
if isinstance(data, dict):
|
||||
print(
|
||||
f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
||||
'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
|
||||
)
|
||||
data = list(data.values())
|
||||
if target_data_type == 'ndarray':
|
||||
if target_data_type == "ndarray":
|
||||
data = np.asarray(data)
|
||||
else:
|
||||
data = list(data)
|
||||
else:
|
||||
raise TypeError(
|
||||
f'The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}.'
|
||||
f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}."
|
||||
)
|
||||
|
||||
if cpu_intensive:
|
||||
@ -150,7 +149,7 @@ def parallel_data_prefetch(
|
||||
Q = Queue(1000)
|
||||
proc = Thread
|
||||
# spawn processes
|
||||
if target_data_type == 'ndarray':
|
||||
if target_data_type == "ndarray":
|
||||
arguments = [
|
||||
[func, Q, part, i, use_worker_id]
|
||||
for i, part in enumerate(np.array_split(data, n_proc))
|
||||
@ -173,7 +172,7 @@ def parallel_data_prefetch(
|
||||
processes += [p]
|
||||
|
||||
# start processes
|
||||
print(f'Start prefetching...')
|
||||
print("Start prefetching...")
|
||||
import time
|
||||
|
||||
start = time.time()
|
||||
@ -186,13 +185,13 @@ def parallel_data_prefetch(
|
||||
while k < n_proc:
|
||||
# get result
|
||||
res = Q.get()
|
||||
if res == 'Done':
|
||||
if res == "Done":
|
||||
k += 1
|
||||
else:
|
||||
gather_res[res[0]] = res[1]
|
||||
|
||||
except Exception as e:
|
||||
print('Exception: ', e)
|
||||
print("Exception: ", e)
|
||||
for p in processes:
|
||||
p.terminate()
|
||||
|
||||
@ -200,15 +199,15 @@ def parallel_data_prefetch(
|
||||
finally:
|
||||
for p in processes:
|
||||
p.join()
|
||||
print(f'Prefetching complete. [{time.time() - start} sec.]')
|
||||
print(f"Prefetching complete. [{time.time() - start} sec.]")
|
||||
|
||||
if target_data_type == 'ndarray':
|
||||
if target_data_type == "ndarray":
|
||||
if not isinstance(gather_res[0], np.ndarray):
|
||||
return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
|
||||
|
||||
# order outputs
|
||||
return np.concatenate(gather_res, axis=0)
|
||||
elif target_data_type == 'list':
|
||||
elif target_data_type == "list":
|
||||
out = []
|
||||
for r in gather_res:
|
||||
out.extend(r)
|
||||
@ -216,49 +215,79 @@ def parallel_data_prefetch(
|
||||
else:
|
||||
return gather_res
|
||||
|
||||
def rand_perlin_2d(shape, res, device, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3):
|
||||
|
||||
def rand_perlin_2d(
|
||||
shape, res, device, fade=lambda t: 6 * t**5 - 15 * t**4 + 10 * t**3
|
||||
):
|
||||
delta = (res[0] / shape[0], res[1] / shape[1])
|
||||
d = (shape[0] // res[0], shape[1] // res[1])
|
||||
|
||||
grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]), indexing='ij'), dim = -1).to(device) % 1
|
||||
grid = (
|
||||
torch.stack(
|
||||
torch.meshgrid(
|
||||
torch.arange(0, res[0], delta[0]),
|
||||
torch.arange(0, res[1], delta[1]),
|
||||
indexing="ij",
|
||||
),
|
||||
dim=-1,
|
||||
).to(device)
|
||||
% 1
|
||||
)
|
||||
|
||||
rand_val = torch.rand(res[0]+1, res[1]+1)
|
||||
rand_val = torch.rand(res[0] + 1, res[1] + 1)
|
||||
|
||||
angles = 2*math.pi*rand_val
|
||||
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim = -1).to(device)
|
||||
angles = 2 * math.pi * rand_val
|
||||
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim=-1).to(device)
|
||||
|
||||
tile_grads = lambda slice1, slice2: gradients[slice1[0]:slice1[1], slice2[0]:slice2[1]].repeat_interleave(d[0], 0).repeat_interleave(d[1], 1)
|
||||
tile_grads = (
|
||||
lambda slice1, slice2: gradients[slice1[0] : slice1[1], slice2[0] : slice2[1]]
|
||||
.repeat_interleave(d[0], 0)
|
||||
.repeat_interleave(d[1], 1)
|
||||
)
|
||||
|
||||
dot = lambda grad, shift: (torch.stack((grid[:shape[0],:shape[1],0] + shift[0], grid[:shape[0],:shape[1], 1] + shift[1] ), dim = -1) * grad[:shape[0], :shape[1]]).sum(dim = -1)
|
||||
dot = lambda grad, shift: (
|
||||
torch.stack(
|
||||
(
|
||||
grid[: shape[0], : shape[1], 0] + shift[0],
|
||||
grid[: shape[0], : shape[1], 1] + shift[1],
|
||||
),
|
||||
dim=-1,
|
||||
)
|
||||
* grad[: shape[0], : shape[1]]
|
||||
).sum(dim=-1)
|
||||
|
||||
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]).to(device)
|
||||
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]).to(device)
|
||||
n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]).to(device)
|
||||
n01 = dot(tile_grads([0, -1],[1, None]), [0, -1]).to(device)
|
||||
n11 = dot(tile_grads([1, None], [1, None]), [-1,-1]).to(device)
|
||||
t = fade(grid[:shape[0], :shape[1]])
|
||||
noise = math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]).to(device)
|
||||
n01 = dot(tile_grads([0, -1], [1, None]), [0, -1]).to(device)
|
||||
n11 = dot(tile_grads([1, None], [1, None]), [-1, -1]).to(device)
|
||||
t = fade(grid[: shape[0], : shape[1]])
|
||||
noise = math.sqrt(2) * torch.lerp(
|
||||
torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]
|
||||
).to(device)
|
||||
return noise.to(dtype=torch_dtype(device))
|
||||
|
||||
|
||||
def ask_user(question: str, answers: list):
|
||||
from itertools import chain, repeat
|
||||
user_prompt = f'\n>> {question} {answers}: '
|
||||
invalid_answer_msg = 'Invalid answer. Please try again.'
|
||||
pose_question = chain([user_prompt], repeat('\n'.join([invalid_answer_msg, user_prompt])))
|
||||
|
||||
user_prompt = f"\n>> {question} {answers}: "
|
||||
invalid_answer_msg = "Invalid answer. Please try again."
|
||||
pose_question = chain(
|
||||
[user_prompt], repeat("\n".join([invalid_answer_msg, user_prompt]))
|
||||
)
|
||||
user_answers = map(input, pose_question)
|
||||
valid_response = next(filter(answers.__contains__, user_answers))
|
||||
return valid_response
|
||||
|
||||
|
||||
def debug_image(debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False ):
|
||||
def debug_image(
|
||||
debug_image, debug_text, debug_show=True, debug_result=False, debug_status=False
|
||||
):
|
||||
if not debug_status:
|
||||
return
|
||||
|
||||
image_copy = debug_image.copy().convert("RGBA")
|
||||
ImageDraw.Draw(image_copy).text(
|
||||
(5, 5),
|
||||
debug_text,
|
||||
(255, 0, 0)
|
||||
)
|
||||
ImageDraw.Draw(image_copy).text((5, 5), debug_text, (255, 0, 0))
|
||||
|
||||
if debug_show:
|
||||
image_copy.show()
|
||||
@ -266,31 +295,84 @@ def debug_image(debug_image, debug_text, debug_show=True, debug_result=False, de
|
||||
if debug_result:
|
||||
return image_copy
|
||||
|
||||
#-------------------------------------
|
||||
class ProgressBar():
|
||||
def __init__(self,model_name='file'):
|
||||
self.pbar = None
|
||||
self.name = model_name
|
||||
|
||||
def __call__(self, block_num, block_size, total_size):
|
||||
if not self.pbar:
|
||||
self.pbar=tqdm(desc=self.name,
|
||||
initial=0,
|
||||
unit='iB',
|
||||
unit_scale=True,
|
||||
unit_divisor=1000,
|
||||
total=total_size)
|
||||
self.pbar.update(block_size)
|
||||
# -------------------------------------
|
||||
def download_with_resume(url: str, dest: Path, access_token: str = None) -> Path:
|
||||
'''
|
||||
Download a model file.
|
||||
:param url: https, http or ftp URL
|
||||
:param dest: A Path object. If path exists and is a directory, then we try to derive the filename
|
||||
from the URL's Content-Disposition header and copy the URL contents into
|
||||
dest/filename
|
||||
:param access_token: Access token to access this resource
|
||||
'''
|
||||
resp = requests.get(url, stream=True)
|
||||
total = int(resp.headers.get("content-length", 0))
|
||||
|
||||
if dest.is_dir():
|
||||
try:
|
||||
file_name = re.search('filename="(.+)"', resp.headers.get("Content-Disposition")).group(1)
|
||||
except:
|
||||
file_name = os.path.basename(url)
|
||||
dest = dest / file_name
|
||||
else:
|
||||
dest.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
print(f'DEBUG: after many manipulations, dest={dest}')
|
||||
|
||||
header = {"Authorization": f"Bearer {access_token}"} if access_token else {}
|
||||
open_mode = "wb"
|
||||
exist_size = 0
|
||||
|
||||
if dest.exists():
|
||||
exist_size = dest.stat().st_size
|
||||
header["Range"] = f"bytes={exist_size}-"
|
||||
open_mode = "ab"
|
||||
|
||||
if (
|
||||
resp.status_code == 416
|
||||
): # "range not satisfiable", which means nothing to return
|
||||
print(f"* {dest}: complete file found. Skipping.")
|
||||
return dest
|
||||
elif resp.status_code != 200:
|
||||
print(f"** An error occurred during downloading {dest}: {resp.reason}")
|
||||
elif exist_size > 0:
|
||||
print(f"* {dest}: partial file found. Resuming...")
|
||||
else:
|
||||
print(f"* {dest}: Downloading...")
|
||||
|
||||
def download_with_progress_bar(url:str, dest:Path)->bool:
|
||||
try:
|
||||
if not dest.exists():
|
||||
dest.parent.mkdir(parents=True, exist_ok=True)
|
||||
request.urlretrieve(url,dest,ProgressBar(dest.stem))
|
||||
return True
|
||||
else:
|
||||
return True
|
||||
except OSError:
|
||||
print(traceback.format_exc())
|
||||
return False
|
||||
if total < 2000:
|
||||
print(f"*** ERROR DOWNLOADING {url}: {resp.text}")
|
||||
return None
|
||||
|
||||
with open(dest, open_mode) as file, tqdm(
|
||||
desc=str(dest),
|
||||
initial=exist_size,
|
||||
total=total + exist_size,
|
||||
unit="iB",
|
||||
unit_scale=True,
|
||||
unit_divisor=1000,
|
||||
) as bar:
|
||||
for data in resp.iter_content(chunk_size=1024):
|
||||
size = file.write(data)
|
||||
bar.update(size)
|
||||
except Exception as e:
|
||||
print(f"An error occurred while downloading {dest}: {str(e)}")
|
||||
return None
|
||||
|
||||
return dest
|
||||
|
||||
|
||||
def url_attachment_name(url: str) -> dict:
|
||||
try:
|
||||
resp = requests.get(url, stream=True)
|
||||
match = re.search('filename="(.+)"', resp.headers.get("Content-Disposition"))
|
||||
return match.group(1)
|
||||
except:
|
||||
return None
|
||||
|
||||
|
||||
def download_with_progress_bar(url: str, dest: Path) -> bool:
|
||||
result = download_with_resume(url, dest, access_token=None)
|
||||
return result is not None
|
||||
|
Loading…
Reference in New Issue
Block a user