mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
Document plan for the rest of the MultiDiffusion implementation.
This commit is contained in:
parent
605f460c7d
commit
fc187c9253
@ -1,12 +1,18 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import math
|
|
||||||
from contextlib import nullcontext
|
from contextlib import nullcontext
|
||||||
from typing import Any, Callable, List, Optional
|
from typing import Any, Callable, List, Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from invokeai.backend.stable_diffusion.diffusers_pipeline import StableDiffusionGeneratorPipeline
|
from invokeai.backend.stable_diffusion.diffusers_pipeline import (
|
||||||
|
AddsMaskGuidance,
|
||||||
|
ControlNetData,
|
||||||
|
PipelineIntermediateState,
|
||||||
|
StableDiffusionGeneratorPipeline,
|
||||||
|
T2IAdapterData,
|
||||||
|
is_inpainting_model,
|
||||||
|
)
|
||||||
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import IPAdapterData, TextConditioningData
|
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import IPAdapterData, TextConditioningData
|
||||||
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData
|
from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import UNetAttentionPatcher, UNetIPAdapterData
|
||||||
|
|
||||||
@ -14,6 +20,32 @@ from invokeai.backend.stable_diffusion.diffusion.unet_attention_patcher import U
|
|||||||
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
||||||
"""A Stable Diffusion pipeline that uses Multi-Diffusion (https://arxiv.org/pdf/2302.08113) for denoising."""
|
"""A Stable Diffusion pipeline that uses Multi-Diffusion (https://arxiv.org/pdf/2302.08113) for denoising."""
|
||||||
|
|
||||||
|
# Plan:
|
||||||
|
# - latents_from_embeddings(...) will accept all of the same global params, but the "local" params will be bundled
|
||||||
|
# together with tile locations.
|
||||||
|
# - What is "local"?:
|
||||||
|
# - conditioning_data could be local, but for upscaling will be global
|
||||||
|
# - control_data makes more sense as global, then we split it up as we split up the latents
|
||||||
|
# - ip_adapter_data sort of has 3 modes to consider:
|
||||||
|
# - global style: applied in the same way to all tiles
|
||||||
|
# - local style: apply different IP-Adapters to each tile
|
||||||
|
# - global structure: we want to crop the input image and run the IP-Adapter on each separately
|
||||||
|
# - t2i_adapter_data won't be supported at first - it's not popular enough
|
||||||
|
# - All the inpainting params are global and need to be cropped accordingly
|
||||||
|
# - Local:
|
||||||
|
# - latents
|
||||||
|
# - conditioning_data
|
||||||
|
# - noise
|
||||||
|
# - control_data
|
||||||
|
# - ip_adapter_data (skip for now)
|
||||||
|
# - t2i_adapter_data (skip for now)
|
||||||
|
# - mask
|
||||||
|
# - masked_latents
|
||||||
|
# - is_gradient_mask ???
|
||||||
|
# - Can we support inpainting models in this node?
|
||||||
|
# - TBD, need to think about this more
|
||||||
|
# - step(...) remains mostly unmodified, is not overriden in this sub-class.
|
||||||
|
# - May need a cleaner AddsMaskGuidance implementation to handle this plan... we'll see.
|
||||||
def latents_from_embeddings(
|
def latents_from_embeddings(
|
||||||
self,
|
self,
|
||||||
latents: torch.Tensor,
|
latents: torch.Tensor,
|
||||||
@ -142,141 +174,3 @@ class MultiDiffusionPipeline(StableDiffusionGeneratorPipeline):
|
|||||||
)
|
)
|
||||||
|
|
||||||
return latents
|
return latents
|
||||||
|
|
||||||
@torch.inference_mode()
|
|
||||||
def step(
|
|
||||||
self,
|
|
||||||
t: torch.Tensor,
|
|
||||||
latents: torch.Tensor,
|
|
||||||
conditioning_data: TextConditioningData,
|
|
||||||
step_index: int,
|
|
||||||
total_step_count: int,
|
|
||||||
scheduler_step_kwargs: dict[str, Any],
|
|
||||||
mask_guidance: AddsMaskGuidance | None,
|
|
||||||
mask: torch.Tensor | None,
|
|
||||||
masked_latents: torch.Tensor | None,
|
|
||||||
control_data: list[ControlNetData] | None = None,
|
|
||||||
ip_adapter_data: Optional[list[IPAdapterData]] = None,
|
|
||||||
t2i_adapter_data: Optional[list[T2IAdapterData]] = None,
|
|
||||||
):
|
|
||||||
# invokeai_diffuser has batched timesteps, but diffusers schedulers expect a single value
|
|
||||||
timestep = t[0]
|
|
||||||
|
|
||||||
# Handle masked image-to-image (a.k.a inpainting).
|
|
||||||
if mask_guidance is not None:
|
|
||||||
# NOTE: This is intentionally done *before* self.scheduler.scale_model_input(...).
|
|
||||||
latents = mask_guidance(latents, timestep)
|
|
||||||
|
|
||||||
# TODO: should this scaling happen here or inside self._unet_forward?
|
|
||||||
# i.e. before or after passing it to InvokeAIDiffuserComponent
|
|
||||||
latent_model_input = self.scheduler.scale_model_input(latents, timestep)
|
|
||||||
|
|
||||||
# Handle ControlNet(s)
|
|
||||||
down_block_additional_residuals = None
|
|
||||||
mid_block_additional_residual = None
|
|
||||||
if control_data is not None:
|
|
||||||
down_block_additional_residuals, mid_block_additional_residual = self.invokeai_diffuser.do_controlnet_step(
|
|
||||||
control_data=control_data,
|
|
||||||
sample=latent_model_input,
|
|
||||||
timestep=timestep,
|
|
||||||
step_index=step_index,
|
|
||||||
total_step_count=total_step_count,
|
|
||||||
conditioning_data=conditioning_data,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Handle T2I-Adapter(s)
|
|
||||||
down_intrablock_additional_residuals = None
|
|
||||||
if t2i_adapter_data is not None:
|
|
||||||
accum_adapter_state = None
|
|
||||||
for single_t2i_adapter_data in t2i_adapter_data:
|
|
||||||
# Determine the T2I-Adapter weights for the current denoising step.
|
|
||||||
first_t2i_adapter_step = math.floor(single_t2i_adapter_data.begin_step_percent * total_step_count)
|
|
||||||
last_t2i_adapter_step = math.ceil(single_t2i_adapter_data.end_step_percent * total_step_count)
|
|
||||||
t2i_adapter_weight = (
|
|
||||||
single_t2i_adapter_data.weight[step_index]
|
|
||||||
if isinstance(single_t2i_adapter_data.weight, list)
|
|
||||||
else single_t2i_adapter_data.weight
|
|
||||||
)
|
|
||||||
if step_index < first_t2i_adapter_step or step_index > last_t2i_adapter_step:
|
|
||||||
# If the current step is outside of the T2I-Adapter's begin/end step range, then set its weight to 0
|
|
||||||
# so it has no effect.
|
|
||||||
t2i_adapter_weight = 0.0
|
|
||||||
|
|
||||||
# Apply the t2i_adapter_weight, and accumulate.
|
|
||||||
if accum_adapter_state is None:
|
|
||||||
# Handle the first T2I-Adapter.
|
|
||||||
accum_adapter_state = [val * t2i_adapter_weight for val in single_t2i_adapter_data.adapter_state]
|
|
||||||
else:
|
|
||||||
# Add to the previous adapter states.
|
|
||||||
for idx, value in enumerate(single_t2i_adapter_data.adapter_state):
|
|
||||||
accum_adapter_state[idx] += value * t2i_adapter_weight
|
|
||||||
|
|
||||||
down_intrablock_additional_residuals = accum_adapter_state
|
|
||||||
|
|
||||||
# Handle inpainting models.
|
|
||||||
if is_inpainting_model(self.unet):
|
|
||||||
# NOTE: These calls to add_inpainting_channels_to_latents(...) are intentionally done *after*
|
|
||||||
# self.scheduler.scale_model_input(...) so that the scaling is not applied to the mask or reference image
|
|
||||||
# latents.
|
|
||||||
if mask is not None:
|
|
||||||
if masked_latents is None:
|
|
||||||
raise ValueError("Source image required for inpaint mask when inpaint model used!")
|
|
||||||
latent_model_input = self.add_inpainting_channels_to_latents(
|
|
||||||
latents=latent_model_input, masked_ref_image_latents=masked_latents, inpainting_mask=mask
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
# We are using an inpainting model, but no mask was provided, so we are not really "inpainting".
|
|
||||||
# We generate a global mask and empty original image so that we can still generate in this
|
|
||||||
# configuration.
|
|
||||||
# TODO(ryand): Should we just raise an exception here instead? I can't think of a use case for wanting
|
|
||||||
# to do this.
|
|
||||||
# TODO(ryand): If we decide that there is a good reason to keep this, then we should generate the 'fake'
|
|
||||||
# mask and original image once rather than on every denoising step.
|
|
||||||
latent_model_input = self.add_inpainting_channels_to_latents(
|
|
||||||
latents=latent_model_input,
|
|
||||||
masked_ref_image_latents=torch.zeros_like(latent_model_input[:1]),
|
|
||||||
inpainting_mask=torch.ones_like(latent_model_input[:1, :1]),
|
|
||||||
)
|
|
||||||
|
|
||||||
uc_noise_pred, c_noise_pred = self.invokeai_diffuser.do_unet_step(
|
|
||||||
sample=latent_model_input,
|
|
||||||
timestep=t, # TODO: debug how handled batched and non batched timesteps
|
|
||||||
step_index=step_index,
|
|
||||||
total_step_count=total_step_count,
|
|
||||||
conditioning_data=conditioning_data,
|
|
||||||
ip_adapter_data=ip_adapter_data,
|
|
||||||
down_block_additional_residuals=down_block_additional_residuals, # for ControlNet
|
|
||||||
mid_block_additional_residual=mid_block_additional_residual, # for ControlNet
|
|
||||||
down_intrablock_additional_residuals=down_intrablock_additional_residuals, # for T2I-Adapter
|
|
||||||
)
|
|
||||||
|
|
||||||
guidance_scale = conditioning_data.guidance_scale
|
|
||||||
if isinstance(guidance_scale, list):
|
|
||||||
guidance_scale = guidance_scale[step_index]
|
|
||||||
|
|
||||||
noise_pred = self.invokeai_diffuser._combine(uc_noise_pred, c_noise_pred, guidance_scale)
|
|
||||||
guidance_rescale_multiplier = conditioning_data.guidance_rescale_multiplier
|
|
||||||
if guidance_rescale_multiplier > 0:
|
|
||||||
noise_pred = self._rescale_cfg(
|
|
||||||
noise_pred,
|
|
||||||
c_noise_pred,
|
|
||||||
guidance_rescale_multiplier,
|
|
||||||
)
|
|
||||||
|
|
||||||
# compute the previous noisy sample x_t -> x_t-1
|
|
||||||
step_output = self.scheduler.step(noise_pred, timestep, latents, **scheduler_step_kwargs)
|
|
||||||
|
|
||||||
# TODO: discuss injection point options. For now this is a patch to get progress images working with inpainting
|
|
||||||
# again.
|
|
||||||
if mask_guidance is not None:
|
|
||||||
# Apply the mask to any "denoised" or "pred_original_sample" fields.
|
|
||||||
if hasattr(step_output, "denoised"):
|
|
||||||
step_output.pred_original_sample = mask_guidance(step_output.denoised, self.scheduler.timesteps[-1])
|
|
||||||
elif hasattr(step_output, "pred_original_sample"):
|
|
||||||
step_output.pred_original_sample = mask_guidance(
|
|
||||||
step_output.pred_original_sample, self.scheduler.timesteps[-1]
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
step_output.pred_original_sample = mask_guidance(latents, self.scheduler.timesteps[-1])
|
|
||||||
|
|
||||||
return step_output
|
|
||||||
|
Loading…
Reference in New Issue
Block a user