diff --git a/invokeai/app/invocations/model.py b/invokeai/app/invocations/model.py index 6f54281075..75ed9fceab 100644 --- a/invokeai/app/invocations/model.py +++ b/invokeai/app/invocations/model.py @@ -141,21 +141,6 @@ class ModelIdentifierInvocation(BaseInvocation): return ModelIdentifierOutput(model=self.model) -T5_ENCODER_OPTIONS = Literal["base", "8b_quantized"] -T5_ENCODER_MAP: Dict[str, Dict[str, str]] = { - "base": { - "repo": "InvokeAI/flux_schnell::t5_xxl_encoder/base", - "name": "t5_base_encoder", - "format": ModelFormat.T5Encoder, - }, - "8b_quantized": { - "repo": "invokeai/flux_schnell::t5_xxl_encoder/optimum_quanto_qfloat8", - "name": "t5_8b_quantized_encoder", - "format": ModelFormat.T5Encoder8b, - }, -} - - @invocation_output("flux_model_loader_output") class FluxModelLoaderOutput(BaseInvocationOutput): """Flux base model loader output""" @@ -196,15 +181,7 @@ class FluxModelLoaderInvocation(BaseInvocation): tokenizer2 = self._get_model(context, SubModelType.Tokenizer2) clip_encoder = self._get_model(context, SubModelType.TextEncoder) t5_encoder = self._get_model(context, SubModelType.TextEncoder2) - vae = self._install_model( - context, - SubModelType.VAE, - "FLUX.1-schnell_ae", - "black-forest-labs/FLUX.1-schnell::ae.safetensors", - ModelFormat.Checkpoint, - ModelType.VAE, - BaseModelType.Flux, - ) + vae = self._get_model(context, SubModelType.VAE) transformer_config = context.models.get_config(transformer) assert isinstance(transformer_config, CheckpointConfigBase) legacy_config_path = context.config.get().legacy_conf_path / transformer_config.config_path @@ -224,36 +201,38 @@ class FluxModelLoaderInvocation(BaseInvocation): match submodel: case SubModelType.Transformer: return self.model.model_copy(update={"submodel_type": SubModelType.Transformer}) + case SubModelType.VAE: + return self._pull_model_from_mm( + context, + SubModelType.VAE, + "FLUX.1-schnell_ae", + ModelType.VAE, + BaseModelType.Flux, + ) case submodel if submodel in [SubModelType.Tokenizer, SubModelType.TextEncoder]: - return self._install_model( + return self._pull_model_from_mm( context, submodel, "clip-vit-large-patch14", - "openai/clip-vit-large-patch14", - ModelFormat.Diffusers, ModelType.CLIPEmbed, BaseModelType.Any, ) case submodel if submodel in [SubModelType.Tokenizer2, SubModelType.TextEncoder2]: - return self._install_model( + return self._pull_model_from_mm( context, submodel, self.t5_encoder.name, - "", - ModelFormat.T5Encoder, ModelType.T5Encoder, BaseModelType.Any, ) case _: raise Exception(f"{submodel.value} is not a supported submodule for a flux model") - def _install_model( + def _pull_model_from_mm( self, context: InvocationContext, submodel: SubModelType, name: str, - repo_id: str, - format: ModelFormat, type: ModelType, base: BaseModelType, ): @@ -262,16 +241,7 @@ class FluxModelLoaderInvocation(BaseInvocation): raise Exception(f"Multiple models detected for selected model with name {name}") return ModelIdentifierField.from_config(models[0]).model_copy(update={"submodel_type": submodel}) else: - model_path = context.models.download_and_cache_model(repo_id) - config = ModelRecordChanges(name=name, base=base, type=type, format=format) - model_install_job = context.models.import_local_model(model_path=model_path, config=config) - while not model_install_job.in_terminal_state: - sleep(0.01) - if not model_install_job.config_out: - raise Exception(f"Failed to install {name}") - return ModelIdentifierField.from_config(model_install_job.config_out).model_copy( - update={"submodel_type": submodel} - ) + raise ValueError(f"Please install the {base}:{type} model named {name} via starter models") @invocation( diff --git a/invokeai/app/services/shared/invocation_context.py b/invokeai/app/services/shared/invocation_context.py index 23189b85ab..3f378b663e 100644 --- a/invokeai/app/services/shared/invocation_context.py +++ b/invokeai/app/services/shared/invocation_context.py @@ -464,29 +464,6 @@ class ModelsInterface(InvocationContextInterface): """ return self._services.model_manager.install.download_and_cache_model(source=source) - def import_local_model( - self, - model_path: Path, - config: Optional[ModelRecordChanges] = None, - inplace: Optional[bool] = False, - ): - """ - Import the model file located at the given local file path and return its ModelInstallJob. - - This can be used to single-file models or directories. - - Args: - model_path: A pathlib.Path object pointing to a model file or directory - config: Optional ModelRecordChanges to define manual probe overrides - inplace: Optional boolean to declare whether or not to install the model in the models dir - - Returns: - ModelInstallJob object defining the install job to be used in tracking the job - """ - if not model_path.exists(): - raise ValueError(f"Models provided to import_local_model must already exist on disk at {model_path.as_posix()}") - return self._services.model_manager.install.heuristic_import(str(model_path), config=config, inplace=inplace) - def load_local_model( self, model_path: Path,