feat(backend): lift managed model loading out of lama class

This commit is contained in:
psychedelicious 2024-04-29 08:12:51 +10:00
parent 57c831442e
commit fcb071f30c
2 changed files with 24 additions and 29 deletions

View File

@ -133,9 +133,11 @@ class LaMaInfillInvocation(InfillImageProcessorInvocation):
"""Infills transparent areas of an image using the LaMa model"""
def infill(self, image: Image.Image, context: InvocationContext):
# Note that this accesses a protected attribute to get to the model manager service.
# Is there a better way?
lama = LaMA(context._services.model_manager)
with context.models.load_ckpt_from_url(
source="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
loader=LaMA.load_jit_model,
) as model:
lama = LaMA(model)
return lama(image)

View File

@ -1,13 +1,12 @@
from typing import TYPE_CHECKING, Any
from pathlib import Path
from typing import Any
import numpy as np
import torch
from PIL import Image
import invokeai.backend.util.logging as logger
if TYPE_CHECKING:
from invokeai.app.services.model_manager import ModelManagerServiceBase
from invokeai.backend.model_manager.config import AnyModel
def norm_img(np_img):
@ -18,24 +17,11 @@ def norm_img(np_img):
return np_img
def load_jit_model(url_or_path, device) -> torch.nn.Module:
model_path = url_or_path
logger.info(f"Loading model from: {model_path}")
model: torch.nn.Module = torch.jit.load(model_path, map_location="cpu").to(device) # type: ignore
model.eval()
return model
class LaMA:
def __init__(self, model_manager: "ModelManagerServiceBase"):
self._model_manager = model_manager
def __init__(self, model: AnyModel):
self._model = model
def __call__(self, input_image: Image.Image, *args: Any, **kwds: Any) -> Any:
loaded_model = self._model_manager.load_ckpt_from_url(
source="https://github.com/Sanster/models/releases/download/add_big_lama/big-lama.pt",
loader=lambda path: load_jit_model(path, "cpu"),
)
image = np.asarray(input_image.convert("RGB"))
image = norm_img(image)
@ -45,16 +31,23 @@ class LaMA:
mask = norm_img(mask)
mask = (mask > 0) * 1
with loaded_model as model:
device = next(model.buffers()).device
device = next(self._model.buffers()).device
image = torch.from_numpy(image).unsqueeze(0).to(device)
mask = torch.from_numpy(mask).unsqueeze(0).to(device)
with torch.inference_mode():
infilled_image = model(image, mask)
infilled_image = self._model(image, mask)
infilled_image = infilled_image[0].permute(1, 2, 0).detach().cpu().numpy()
infilled_image = np.clip(infilled_image * 255, 0, 255).astype("uint8")
infilled_image = Image.fromarray(infilled_image)
return infilled_image
@staticmethod
def load_jit_model(url_or_path: str | Path, device: torch.device | str = "cpu") -> torch.nn.Module:
model_path = url_or_path
logger.info(f"Loading model from: {model_path}")
model: torch.nn.Module = torch.jit.load(model_path, map_location="cpu").to(device) # type: ignore
model.eval()
return model