reformat with black

This commit is contained in:
Lincoln Stein 2023-07-27 15:01:00 -04:00
parent 00988e4972
commit fd75a1dd10
3 changed files with 249 additions and 272 deletions

View File

@ -28,38 +28,42 @@ ConvertModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
MergeModelResponse = Union[tuple(OPENAPI_MODEL_CONFIGS)]
ImportModelAttributes = Union[tuple(OPENAPI_MODEL_CONFIGS)]
class ModelsList(BaseModel):
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
@models_router.get(
"/",
operation_id="list_models",
responses={200: {"model": ModelsList }},
responses={200: {"model": ModelsList}},
)
async def list_models(
base_models: Optional[List[BaseModelType]] = Query(default=None, description="Base models to include"),
model_type: Optional[ModelType] = Query(default=None, description="The type of model to get"),
) -> ModelsList:
"""Gets a list of models"""
if base_models and len(base_models)>0:
if base_models and len(base_models) > 0:
models_raw = list()
for base_model in base_models:
models_raw.extend(ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type))
else:
models_raw = ApiDependencies.invoker.services.model_manager.list_models(None, model_type)
models = parse_obj_as(ModelsList, { "models": models_raw })
models = parse_obj_as(ModelsList, {"models": models_raw})
return models
@models_router.patch(
"/{base_model}/{model_type}/{model_name}",
operation_id="update_model",
responses={200: {"description" : "The model was updated successfully"},
400: {"description" : "Bad request"},
404: {"description" : "The model could not be found"},
409: {"description" : "There is already a model corresponding to the new name"},
responses={
200: {"description": "The model was updated successfully"},
400: {"description": "Bad request"},
404: {"description": "The model could not be found"},
409: {"description": "There is already a model corresponding to the new name"},
},
status_code = 200,
response_model = UpdateModelResponse,
status_code=200,
response_model=UpdateModelResponse,
)
async def update_model(
base_model: BaseModelType = Path(description="Base model"),
@ -67,10 +71,9 @@ async def update_model(
model_name: str = Path(description="model name"),
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> UpdateModelResponse:
""" Update model contents with a new config. If the model name or base fields are changed, then the model is renamed. """
"""Update model contents with a new config. If the model name or base fields are changed, then the model is renamed."""
logger = ApiDependencies.invoker.services.logger
try:
previous_info = ApiDependencies.invoker.services.model_manager.list_model(
model_name=model_name,
@ -81,13 +84,13 @@ async def update_model(
# rename operation requested
if info.model_name != model_name or info.base_model != base_model:
ApiDependencies.invoker.services.model_manager.rename_model(
base_model = base_model,
model_type = model_type,
model_name = model_name,
new_name = info.model_name,
new_base = info.base_model,
base_model=base_model,
model_type=model_type,
model_name=model_name,
new_name=info.model_name,
new_base=info.base_model,
)
logger.info(f'Successfully renamed {base_model.value}/{model_name}=>{info.base_model}/{info.model_name}')
logger.info(f"Successfully renamed {base_model.value}/{model_name}=>{info.base_model}/{info.model_name}")
# update information to support an update of attributes
model_name = info.model_name
base_model = info.base_model
@ -96,14 +99,13 @@ async def update_model(
base_model=base_model,
model_type=model_type,
)
if new_info.get('path') != previous_info.get('path'): # model manager moved model path during rename - don't overwrite it
info.path = new_info.get('path')
if new_info.get("path") != previous_info.get(
"path"
): # model manager moved model path during rename - don't overwrite it
info.path = new_info.get("path")
ApiDependencies.invoker.services.model_manager.update_model(
model_name=model_name,
base_model=base_model,
model_type=model_type,
model_attributes=info.dict()
model_name=model_name, base_model=base_model, model_type=model_type, model_attributes=info.dict()
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
@ -123,34 +125,35 @@ async def update_model(
return model_response
@models_router.post(
"/import",
operation_id="import_model",
responses= {
201: {"description" : "The model imported successfully"},
404: {"description" : "The model could not be found"},
415: {"description" : "Unrecognized file/folder format"},
424: {"description" : "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description" : "There is already a model corresponding to this path or repo_id"},
responses={
201: {"description": "The model imported successfully"},
404: {"description": "The model could not be found"},
415: {"description": "Unrecognized file/folder format"},
424: {"description": "The model appeared to import successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_model=ImportModelResponse
response_model=ImportModelResponse,
)
async def import_model(
location: str = Body(description="A model path, repo_id or URL to import"),
prediction_type: Optional[Literal['v_prediction','epsilon','sample']] = \
Body(description='Prediction type for SDv2 checkpoint files', default="v_prediction"),
prediction_type: Optional[Literal["v_prediction", "epsilon", "sample"]] = Body(
description="Prediction type for SDv2 checkpoint files", default="v_prediction"
),
) -> ImportModelResponse:
""" Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically """
"""Add a model using its local path, repo_id, or remote URL. Model characteristics will be probed and configured automatically"""
items_to_import = {location}
prediction_types = { x.value: x for x in SchedulerPredictionType }
prediction_types = {x.value: x for x in SchedulerPredictionType}
logger = ApiDependencies.invoker.services.logger
try:
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
items_to_import = items_to_import,
prediction_type_helper = lambda x: prediction_types.get(prediction_type)
items_to_import=items_to_import, prediction_type_helper=lambda x: prediction_types.get(prediction_type)
)
info = installed_models.get(location)
@ -158,11 +161,9 @@ async def import_model(
logger.error("Import failed")
raise HTTPException(status_code=415)
logger.info(f'Successfully imported {location}, got {info}')
logger.info(f"Successfully imported {location}, got {info}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.name,
base_model=info.base_model,
model_type=info.model_type
model_name=info.name, base_model=info.base_model, model_type=info.model_type
)
return parse_obj_as(ImportModelResponse, model_raw)
@ -176,37 +177,33 @@ async def import_model(
logger.error(str(e))
raise HTTPException(status_code=409, detail=str(e))
@models_router.post(
"/add",
operation_id="add_model",
responses= {
201: {"description" : "The model added successfully"},
404: {"description" : "The model could not be found"},
424: {"description" : "The model appeared to add successfully, but could not be found in the model manager"},
409: {"description" : "There is already a model corresponding to this path or repo_id"},
responses={
201: {"description": "The model added successfully"},
404: {"description": "The model could not be found"},
424: {"description": "The model appeared to add successfully, but could not be found in the model manager"},
409: {"description": "There is already a model corresponding to this path or repo_id"},
},
status_code=201,
response_model=ImportModelResponse
response_model=ImportModelResponse,
)
async def add_model(
info: Union[tuple(OPENAPI_MODEL_CONFIGS)] = Body(description="Model configuration"),
) -> ImportModelResponse:
""" Add a model using the configuration information appropriate for its type. Only local models can be added by path"""
"""Add a model using the configuration information appropriate for its type. Only local models can be added by path"""
logger = ApiDependencies.invoker.services.logger
try:
ApiDependencies.invoker.services.model_manager.add_model(
info.model_name,
info.base_model,
info.model_type,
model_attributes = info.dict()
info.model_name, info.base_model, info.model_type, model_attributes=info.dict()
)
logger.info(f'Successfully added {info.model_name}')
logger.info(f"Successfully added {info.model_name}")
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name=info.model_name,
base_model=info.base_model,
model_type=info.model_type
model_name=info.model_name, base_model=info.base_model, model_type=info.model_type
)
return parse_obj_as(ImportModelResponse, model_raw)
except ModelNotFoundException as e:
@ -220,12 +217,9 @@ async def add_model(
@models_router.delete(
"/{base_model}/{model_type}/{model_name}",
operation_id="del_model",
responses={
204: { "description": "Model deleted successfully" },
404: { "description": "Model not found" }
},
status_code = 204,
response_model = None,
responses={204: {"description": "Model deleted successfully"}, 404: {"description": "Model not found"}},
status_code=204,
response_model=None,
)
async def delete_model(
base_model: BaseModelType = Path(description="Base model"),
@ -236,9 +230,8 @@ async def delete_model(
logger = ApiDependencies.invoker.services.logger
try:
ApiDependencies.invoker.services.model_manager.del_model(model_name,
base_model = base_model,
model_type = model_type
ApiDependencies.invoker.services.model_manager.del_model(
model_name, base_model=base_model, model_type=model_type
)
logger.info(f"Deleted model: {model_name}")
return Response(status_code=204)
@ -246,36 +239,40 @@ async def delete_model(
logger.error(str(e))
raise HTTPException(status_code=404, detail=str(e))
@models_router.put(
"/convert/{base_model}/{model_type}/{model_name}",
operation_id="convert_model",
responses={
200: { "description": "Model converted successfully" },
400: {"description" : "Bad request" },
404: { "description": "Model not found" },
200: {"description": "Model converted successfully"},
400: {"description": "Bad request"},
404: {"description": "Model not found"},
},
status_code = 200,
response_model = ConvertModelResponse,
status_code=200,
response_model=ConvertModelResponse,
)
async def convert_model(
base_model: BaseModelType = Path(description="Base model"),
model_type: ModelType = Path(description="The type of model"),
model_name: str = Path(description="model name"),
convert_dest_directory: Optional[str] = Query(default=None, description="Save the converted model to the designated directory"),
convert_dest_directory: Optional[str] = Query(
default=None, description="Save the converted model to the designated directory"
),
) -> ConvertModelResponse:
"""Convert a checkpoint model into a diffusers model, optionally saving to the indicated destination directory, or `models` if none."""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Converting model: {model_name}")
dest = pathlib.Path(convert_dest_directory) if convert_dest_directory else None
ApiDependencies.invoker.services.model_manager.convert_model(model_name,
base_model = base_model,
model_type = model_type,
convert_dest_directory = dest,
ApiDependencies.invoker.services.model_manager.convert_model(
model_name,
base_model=base_model,
model_type=model_type,
convert_dest_directory=dest,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
model_name, base_model=base_model, model_type=model_type
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(model_name,
base_model = base_model,
model_type = model_type)
response = parse_obj_as(ConvertModelResponse, model_raw)
except ModelNotFoundException as e:
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found: {str(e)}")
@ -283,34 +280,37 @@ async def convert_model(
raise HTTPException(status_code=400, detail=str(e))
return response
@models_router.get(
"/search",
operation_id="search_for_models",
responses={
200: { "description": "Directory searched successfully" },
404: { "description": "Invalid directory path" },
200: {"description": "Directory searched successfully"},
404: {"description": "Invalid directory path"},
},
status_code = 200,
response_model = List[pathlib.Path]
status_code=200,
response_model=List[pathlib.Path],
)
async def search_for_models(
search_path: pathlib.Path = Query(description="Directory path to search for models")
)->List[pathlib.Path]:
search_path: pathlib.Path = Query(description="Directory path to search for models"),
) -> List[pathlib.Path]:
if not search_path.is_dir():
raise HTTPException(status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory")
raise HTTPException(
status_code=404, detail=f"The search path '{search_path}' does not exist or is not directory"
)
return ApiDependencies.invoker.services.model_manager.search_for_models(search_path)
@models_router.get(
"/ckpt_confs",
operation_id="list_ckpt_configs",
responses={
200: { "description" : "paths retrieved successfully" },
200: {"description": "paths retrieved successfully"},
},
status_code = 200,
response_model = List[pathlib.Path]
status_code=200,
response_model=List[pathlib.Path],
)
async def list_ckpt_configs(
)->List[pathlib.Path]:
async def list_ckpt_configs() -> List[pathlib.Path]:
"""Return a list of the legacy checkpoint configuration files stored in `ROOT/configs/stable-diffusion`, relative to ROOT."""
return ApiDependencies.invoker.services.model_manager.list_checkpoint_configs()
@ -319,28 +319,28 @@ async def list_ckpt_configs(
"/sync",
operation_id="sync_to_config",
responses={
201: { "description": "synchronization successful" },
201: {"description": "synchronization successful"},
},
status_code = 201,
response_model = bool
status_code=201,
response_model=bool,
)
async def sync_to_config(
)->bool:
async def sync_to_config() -> bool:
"""Call after making changes to models.yaml, autoimport directories or models directory to synchronize
in-memory data structures with disk data structures."""
ApiDependencies.invoker.services.model_manager.sync_to_config()
return True
@models_router.put(
"/merge/{base_model}",
operation_id="merge_models",
responses={
200: { "description": "Model converted successfully" },
400: { "description": "Incompatible models" },
404: { "description": "One or more models not found" },
200: {"description": "Model converted successfully"},
400: {"description": "Incompatible models"},
404: {"description": "One or more models not found"},
},
status_code = 200,
response_model = MergeModelResponse,
status_code=200,
response_model=MergeModelResponse,
)
async def merge_models(
base_model: BaseModelType = Path(description="Base model"),
@ -348,25 +348,32 @@ async def merge_models(
merged_model_name: Optional[str] = Body(description="Name of destination model"),
alpha: Optional[float] = Body(description="Alpha weighting strength to apply to 2d and 3d models", default=0.5),
interp: Optional[MergeInterpolationMethod] = Body(description="Interpolation method"),
force: Optional[bool] = Body(description="Force merging of models created with different versions of diffusers", default=False),
merge_dest_directory: Optional[str] = Body(description="Save the merged model to the designated directory (with 'merged_model_name' appended)", default=None)
force: Optional[bool] = Body(
description="Force merging of models created with different versions of diffusers", default=False
),
merge_dest_directory: Optional[str] = Body(
description="Save the merged model to the designated directory (with 'merged_model_name' appended)",
default=None,
),
) -> MergeModelResponse:
"""Convert a checkpoint model into a diffusers model"""
logger = ApiDependencies.invoker.services.logger
try:
logger.info(f"Merging models: {model_names} into {merge_dest_directory or '<MODELS>'}/{merged_model_name}")
dest = pathlib.Path(merge_dest_directory) if merge_dest_directory else None
result = ApiDependencies.invoker.services.model_manager.merge_models(model_names,
result = ApiDependencies.invoker.services.model_manager.merge_models(
model_names,
base_model,
merged_model_name=merged_model_name or "+".join(model_names),
alpha=alpha,
interp=interp,
force=force,
merge_dest_directory = dest
merge_dest_directory=dest,
)
model_raw = ApiDependencies.invoker.services.model_manager.list_model(result.name,
base_model = base_model,
model_type = ModelType.Main,
model_raw = ApiDependencies.invoker.services.model_manager.list_model(
result.name,
base_model=base_model,
model_type=ModelType.Main,
)
response = parse_obj_as(ConvertModelResponse, model_raw)
except ModelNotFoundException:

View File

@ -17,15 +17,16 @@ from invokeai.backend.model_management.models import ModelType, SilenceWarnings
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData, ControlNetData, StableDiffusionGeneratorPipeline,
image_resized_to_grid_as_tensor)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
PostprocessingSettings
ConditioningData,
ControlNetData,
StableDiffusionGeneratorPipeline,
image_resized_to_grid_as_tensor,
)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import choose_torch_device, torch_dtype, choose_precision
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .baseinvocation import BaseInvocation, BaseInvocationOutput, InvocationConfig, InvocationContext
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
@ -46,8 +47,7 @@ DEFAULT_PRECISION = choose_precision(choose_torch_device())
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(
default=None, description="The name of the latents")
latents_name: Optional[str] = Field(default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
@ -55,14 +55,15 @@ class LatentsField(BaseModel):
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
# fmt: off
type: Literal["latents_output"] = "latents_output"
# Inputs
latents: LatentsField = Field(default=None, description="The output latents")
width: int = Field(description="The width of the latents in pixels")
height: int = Field(description="The height of the latents in pixels")
#fmt: on
# fmt: on
def build_latents_output(latents_name: str, latents: torch.Tensor):
@ -73,9 +74,7 @@ def build_latents_output(latents_name: str, latents: torch.Tensor):
)
SAMPLER_NAME_VALUES = Literal[
tuple(list(SCHEDULER_MAP.keys()))
]
SAMPLER_NAME_VALUES = Literal[tuple(list(SCHEDULER_MAP.keys()))]
def get_scheduler(
@ -83,11 +82,10 @@ def get_scheduler(
scheduler_info: ModelInfo,
scheduler_name: str,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(
scheduler_name, SCHEDULER_MAP['ddim']
)
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(scheduler_name, SCHEDULER_MAP["ddim"])
orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.dict(), context=context,
**scheduler_info.dict(),
context=context,
)
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
@ -102,7 +100,7 @@ def get_scheduler(
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
if not hasattr(scheduler, "uses_inpainting_model"):
scheduler.uses_inpainting_model = lambda: False
return scheduler
@ -123,8 +121,8 @@ class TextToLatentsInvocation(BaseInvocation):
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
unet: UNetField = Field(default=None, description="UNet submodel")
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
# seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator("cfg_scale")
@ -133,10 +131,10 @@ class TextToLatentsInvocation(BaseInvocation):
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError('cfg_scale must be greater than 1')
raise ValueError("cfg_scale must be greater than 1")
else:
if v < 1:
raise ValueError('cfg_scale must be greater than 1')
raise ValueError("cfg_scale must be greater than 1")
return v
# Schema customisation
@ -149,8 +147,8 @@ class TextToLatentsInvocation(BaseInvocation):
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number"
}
"cfg_scale": "number",
},
},
}
@ -190,16 +188,14 @@ class TextToLatentsInvocation(BaseInvocation):
threshold=0.0, # threshold,
warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None # v_symmetry_time_pct,
v_symmetry_time_pct=None, # v_symmetry_time_pct,
),
)
conditioning_data = conditioning_data.add_scheduler_args_if_applicable(
scheduler,
# for ddim scheduler
eta=0.0, # ddim_eta
# for ancestral and sde schedulers
generator=torch.Generator(device=unet.device).manual_seed(0),
)
@ -247,7 +243,6 @@ class TextToLatentsInvocation(BaseInvocation):
exit_stack: ExitStack,
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
# assuming fixed dimensional scaling of 8:1 for image:latents
control_height_resize = latents_shape[2] * 8
control_width_resize = latents_shape[3] * 8
@ -261,7 +256,7 @@ class TextToLatentsInvocation(BaseInvocation):
control_list = control_input
else:
control_list = None
if (control_list is None):
if control_list is None:
control_data = None
# from above handling, any control that is not None should now be of type list[ControlField]
else:
@ -281,9 +276,7 @@ class TextToLatentsInvocation(BaseInvocation):
control_models.append(control_model)
control_image_field = control_info.image
input_image = context.services.images.get_pil_image(
control_image_field.image_name
)
input_image = context.services.images.get_pil_image(control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
@ -322,9 +315,7 @@ class TextToLatentsInvocation(BaseInvocation):
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
@ -333,19 +324,20 @@ class TextToLatentsInvocation(BaseInvocation):
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}), context=context,
**lora.dict(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(), context=context,
**self.unet.unet.dict(),
context=context,
)
with ExitStack() as exit_stack,\
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
unet_info.context.model, _lora_loader()
), unet_info as unet:
noise = noise.to(device=unet.device, dtype=unet.dtype)
scheduler = get_scheduler(
@ -358,7 +350,9 @@ class TextToLatentsInvocation(BaseInvocation):
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
model=pipeline,
context=context,
control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
@ -379,7 +373,7 @@ class TextToLatentsInvocation(BaseInvocation):
result_latents = result_latents.to("cpu")
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
@ -390,11 +384,8 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to use as a base image")
strength: float = Field(
default=0.7, ge=0, le=1,
description="The strength of the latents to use")
latents: Optional[LatentsField] = Field(description="The latents to use as a base image")
strength: float = Field(default=0.7, ge=0, le=1, description="The strength of the latents to use")
# Schema customisation
class Config(InvocationConfig):
@ -406,7 +397,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
"model": "model",
"control": "control",
"cfg_scale": "number",
}
},
},
}
@ -417,9 +408,7 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id
)
graph_execution_state = context.services.graph_execution_manager.get(context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
@ -428,19 +417,20 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}), context=context,
**lora.dict(exclude={"weight"}),
context=context,
)
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict(), context=context,
**self.unet.unet.dict(),
context=context,
)
with ExitStack() as exit_stack,\
ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
with ExitStack() as exit_stack, ModelPatcher.apply_lora_unet(
unet_info.context.model, _lora_loader()
), unet_info as unet:
noise = noise.to(device=unet.device, dtype=unet.dtype)
latent = latent.to(device=unet.device, dtype=unet.dtype)
@ -454,7 +444,9 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
conditioning_data = self.get_conditioning_data(context, scheduler, unet)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
model=pipeline,
context=context,
control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
@ -462,8 +454,8 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=unet.device, dtype=latent.dtype
initial_latents = (
latent if self.strength < 1.0 else torch.zeros_like(latent, device=unet.device, dtype=latent.dtype)
)
timesteps, _ = pipeline.get_img2img_timesteps(
@ -479,14 +471,14 @@ class LatentsToLatentsInvocation(TextToLatentsInvocation):
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
callback=step_callback,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
result_latents = result_latents.to("cpu")
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
name = f"{context.graph_execution_state_id}__{self.id}"
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
@ -498,14 +490,13 @@ class LatentsToImageInvocation(BaseInvocation):
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to generate an image from")
latents: Optional[LatentsField] = Field(description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Decode latents by overlaping tiles(less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION=='float32', description="Decode in full precision")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
tiled: bool = Field(default=False, description="Decode latents by overlaping tiles(less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION == "float32", description="Decode in full precision")
metadata: Optional[CoreMetadata] = Field(
default=None, description="Optional core metadata to be written to the image"
)
# Schema customisation
class Config(InvocationConfig):
@ -521,7 +512,8 @@ class LatentsToImageInvocation(BaseInvocation):
latents = context.services.latents.get(self.latents.latents_name)
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(), context=context,
**self.vae.vae.dict(),
context=context,
)
with vae_info as vae:
@ -588,8 +580,7 @@ class LatentsToImageInvocation(BaseInvocation):
)
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear",
"bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
class ResizeLatentsInvocation(BaseInvocation):
@ -598,36 +589,30 @@ class ResizeLatentsInvocation(BaseInvocation):
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to resize")
width: Union[int, None] = Field(default=512,
ge=64, multiple_of=8, description="The width to resize to (px)")
height: Union[int, None] = Field(default=512,
ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
latents: Optional[LatentsField] = Field(description="The latents to resize")
width: Union[int, None] = Field(default=512, ge=64, multiple_of=8, description="The width to resize to (px)")
height: Union[int, None] = Field(default=512, ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)"
)
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Resize Latents",
"tags": ["latents", "resize"]
},
"ui": {"title": "Resize Latents", "tags": ["latents", "resize"]},
}
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO:
device=choose_torch_device()
device = choose_torch_device()
resized_latents = torch.nn.functional.interpolate(
latents.to(device), size=(self.height // 8, self.width // 8),
mode=self.mode, antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,
latents.to(device),
size=(self.height // 8, self.width // 8),
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
@ -646,35 +631,30 @@ class ScaleLatentsInvocation(BaseInvocation):
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to scale")
scale_factor: float = Field(
gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
latents: Optional[LatentsField] = Field(description="The latents to scale")
scale_factor: float = Field(gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
default=False, description="Whether or not to antialias (applied in bilinear and bicubic modes only)"
)
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Scale Latents",
"tags": ["latents", "scale"]
},
"ui": {"title": "Scale Latents", "tags": ["latents", "scale"]},
}
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# TODO:
device=choose_torch_device()
device = choose_torch_device()
# resizing
resized_latents = torch.nn.functional.interpolate(
latents.to(device), scale_factor=self.scale_factor, mode=self.mode,
antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,
latents.to(device),
scale_factor=self.scale_factor,
mode=self.mode,
antialias=self.antialias if self.mode in ["bilinear", "bicubic"] else False,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
@ -695,19 +675,13 @@ class ImageToLatentsInvocation(BaseInvocation):
# Inputs
image: Optional[ImageField] = Field(description="The image to encode")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Encode latents by overlaping tiles(less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION=='float32', description="Decode in full precision")
tiled: bool = Field(default=False, description="Encode latents by overlaping tiles(less memory consumption)")
fp32: bool = Field(DEFAULT_PRECISION == "float32", description="Decode in full precision")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Image To Latents",
"tags": ["latents", "image"]
},
"ui": {"title": "Image To Latents", "tags": ["latents", "image"]},
}
@torch.no_grad()
@ -717,9 +691,10 @@ class ImageToLatentsInvocation(BaseInvocation):
# )
image = context.services.images.get_pil_image(self.image.image_name)
#vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
# vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(), context=context,
**self.vae.vae.dict(),
context=context,
)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
@ -746,12 +721,12 @@ class ImageToLatentsInvocation(BaseInvocation):
vae.post_quant_conv.to(orig_dtype)
vae.decoder.conv_in.to(orig_dtype)
vae.decoder.mid_block.to(orig_dtype)
#else:
# else:
# latents = latents.float()
else:
vae.to(dtype=torch.float16)
#latents = latents.half()
# latents = latents.half()
if self.tiled:
vae.enable_tiling()
@ -762,9 +737,7 @@ class ImageToLatentsInvocation(BaseInvocation):
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
latents = image_tensor_dist.sample().to(
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
latents = image_tensor_dist.sample().to(dtype=vae.dtype) # FIXME: uses torch.randn. make reproducible!
latents = vae.config.scaling_factor * latents
latents = latents.to(dtype=orig_dtype)

View File

@ -7,13 +7,10 @@ from invokeai.backend.model_management.model_probe import ModelProbe
parser = argparse.ArgumentParser(description="Probe model type")
parser.add_argument(
'model_path',
"model_path",
type=Path,
)
args=parser.parse_args()
args = parser.parse_args()
info = ModelProbe().probe(args.model_path)
print(info)