Revert "feat(nodes): add prompt region from image nodes"

This reverts commit 3a531c5097.
This commit is contained in:
psychedelicious 2024-04-09 20:28:38 +10:00 committed by Kent Keirsey
parent 182810337c
commit fe386252f3

View File

@ -1,15 +1,7 @@
import numpy as np
import torch
from pydantic import BaseModel
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import ColorField, ImageField, InputField, OutputField, TensorField, WithMetadata
from invokeai.app.invocations.baseinvocation import BaseInvocation, InvocationContext, invocation
from invokeai.app.invocations.fields import InputField, TensorField, WithMetadata
from invokeai.app.invocations.primitives import MaskOutput
@ -42,76 +34,3 @@ class RectangleMaskInvocation(BaseInvocation, WithMetadata):
width=self.width,
height=self.height,
)
class PromptColorPair(BaseModel):
prompt: str
color: ColorField
class PromptMaskPair(BaseModel):
prompt: str
mask: TensorField
default_prompt_color_pairs = [
PromptColorPair(prompt="Strawberries", color=ColorField(r=200, g=0, b=0, a=255)),
PromptColorPair(prompt="Frog", color=ColorField(r=0, g=200, b=0, a=255)),
PromptColorPair(prompt="Banana", color=ColorField(r=0, g=0, b=200, a=255)),
PromptColorPair(prompt="A gnome", color=ColorField(r=215, g=0, b=255, a=255)),
]
@invocation_output("extract_masks_and_prompts_output")
class ExtractMasksAndPromptsOutput(BaseInvocationOutput):
prompt_mask_pairs: list[PromptMaskPair] = OutputField(description="List of prompts and their corresponding masks.")
@invocation(
"extract_masks_and_prompts",
title="Extract Masks and Prompts",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class ExtractMasksAndPromptsInvocation(BaseInvocation):
"""Extract masks and prompts from a segmented mask image and prompt-to-color map."""
prompt_color_pairs: list[PromptColorPair] = InputField(
default=default_prompt_color_pairs, description="List of prompts and their corresponding colors."
)
image: ImageField = InputField(description="Mask to apply to the prompts.")
def invoke(self, context: InvocationContext) -> ExtractMasksAndPromptsOutput:
prompt_mask_pairs: list[PromptMaskPair] = []
image = context.images.get_pil(self.image.image_name)
image_as_tensor = torch.from_numpy(np.array(image, dtype=np.uint8))
for pair in self.prompt_color_pairs:
# TODO(ryand): Make this work for both RGB and RGBA images.
mask = torch.all(image_as_tensor == torch.tensor(pair.color.tuple()), dim=-1)
mask_tensor_name = context.tensors.save(mask)
prompt_mask_pairs.append(PromptMaskPair(prompt=pair.prompt, mask=TensorField(tensor_name=mask_tensor_name)))
return ExtractMasksAndPromptsOutput(prompt_mask_pairs=prompt_mask_pairs)
@invocation_output("split_mask_prompt_pair_output")
class SplitMaskPromptPairOutput(BaseInvocationOutput):
prompt: str = OutputField()
mask: TensorField = OutputField()
@invocation(
"split_mask_prompt_pair",
title="Split Mask-Prompt pair",
tags=["conditioning"],
category="conditioning",
version="1.0.0",
)
class SplitMaskPromptPair(BaseInvocation):
"""Extract masks and prompts from a segmented mask image and prompt-to-color map."""
prompt_mask_pair: PromptMaskPair = InputField()
def invoke(self, context: InvocationContext) -> SplitMaskPromptPairOutput:
return SplitMaskPromptPairOutput(mask=self.prompt_mask_pair.mask, prompt=self.prompt_mask_pair.prompt)