- Add and use more performant `deepClone` method for deep copying throughout the UI.
Benchmarks indicate the Really Fast Deep Clone library (`rfdc`) is the best all-around way to deep-clone large objects.
This is particularly relevant in canvas. When drawing or otherwise manipulating canvas objects, we need to do a lot of deep cloning of the canvas layer state objects.
Previously, we were using lodash's `cloneDeep`.
I did some fairly realistic benchmarks with a handful of deep-cloning algorithms/libraries (including the native `structuredClone`). I used a snapshot of the canvas state as the data to be copied:
On Chromium, `rfdc` is by far the fastest, over an order of magnitude faster than `cloneDeep`.
On FF, `fastest-json-copy` and `recursiveDeepCopy` are even faster, but are rather limited in data types. `rfdc`, while only half as fast as the former 2, is still nearly an order of magnitude faster than `cloneDeep`.
On Safari, `structuredClone` is the fastest, about 2x as fast as `cloneDeep`. `rfdc` is only 30% faster than `cloneDeep`.
`rfdc`'s peak memory usage is about 10% more than `cloneDeep` on Chrome. I couldn't get memory measurements from FF and Safari, but let's just assume the memory usage is similar relative to the other algos.
Overall, `rfdc` is the best choice for a single algo for all browsers. It's definitely the best for Chromium, by far the most popular desktop browser and thus our primary target.
A future enhancement might be to detect the browser and use that to determine which algorithm to use.
Loading default workflows sometimes requires we mutate the workflow object in order to change the category or ID of the workflow.
This happens in `invokeai/frontend/web/src/features/nodes/util/workflow/validateWorkflow.ts`
The data we get back from the query hooks is frozen and sealed by redux, because they are part of redux state. We need to clone the workflow before operating on it.
It's not clear how this ever worked in the past, because redux state has always been frozen and sealed.
The graph builders used awaited functions within `Array.prototype.forEach` loops. This doesn't do what you'd think. This caused graphs to be enqueued before they were fully constructed.
Changed to `for..of` loops to fix this.
There wasn't enough validation of control adapters during graph building. It would be possible for a graph to be built with empty collect node, causing an error. Addressed with an extra check.
This should never happen in practice, because the invoke button should be disabled if an invalid CA is active.
Recently the schema for models was changed to a generic `ModelField`, and the UI was unable to derive the type of those fields. This didn't affect functionality, but it did break the styling of handles.
Add `ui_type` to the affected fields and update the UI to use the correct capitalizations.
Add concepts for metadata handlers. Handlers include parsers, recallers and validators for different metadata types:
- Parsers parse a raw metadata object of any shape to a structured object.
- Recallers load the parsed metadata into state. Recallers are optional, as some metadata types don't need to be loaded into state.
- Validators provide an additional layer of validation before recalling the metadata. This is needed because a metadata object may be valid, but not able to be recalled due to some other requirement, like base model compatibility. Validators are optional.
Sometimes metadata is not a single object but a list of items - like LoRAs. Metadata handlers may implement an optional set of "item" handlers which operate on individual items in the list.
Parsers and validators are async to allow fetching additional data, like a model config. Recallers are synchronous.
The these handlers are composed into a public API, exported as a `handlers` object. Besides the handlers functions, a metadata handler set includes:
- A function to get the label of the metadata type.
- An optional function to render the value of the metadata type.
- An optional function to render the _item_ value of the metadata type.
Refactor of metadata recall handling. This is in preparation for a backwards compatibility layer for models.
- Create helpers to fetch a model outside react (e.g. not in a hook)
- Created helpers to parse model metadata
- Renamed a lot of types that were confusing and/or had naming collisions