When returning a `FileResponse`, we must provide a valid path, else an exception is raised outside the route handler.
Add the `validate_path` method back to the service so we can validate paths before returning the file.
I don't like this but apparently this is just how `starlette` and `fastapi` works with `FileResponse`.
- Address database feedback:
- Remove all the extraneous tables. Only an `images` table now:
- `image_type` and `image_category` are unrestricted strings. When creating images, the provided values are checked to ensure they are a valid type and category.
- Add `updated_at` and `deleted_at` columns. `deleted_at` is currently unused.
- Use SQLite's built-in timestamp features to populate these. Add a trigger to update `updated_at` when the row is updated. Currently no way to update a row.
- Rename the `id` column in `images` to `image_name`
- Rename `ImageCategory.IMAGE` to `ImageCategory.GENERAL`
- Move all exceptions outside their base classes to make them more portable.
- Add `width` and `height` columns to the database. These store the actual dimensions of the image file, whereas the metadata's `width` and `height` refer to the respective generation parameters and are nullable.
- Make `deserialize_image_record` take a `dict` instead of `sqlite3.Row`
- Improve comments throughout
- Tidy up unused code/files and some minor organisation
feat(nodes): add ResultsServiceABC & SqliteResultsService
**Doesn't actually work bc of circular imports. Can't even test it.**
- add a base class for ResultsService and SQLite implementation
- use `graph_execution_manager` `on_changed` callback to keep `results` table in sync
fix(nodes): fix results service bugs
chore(ui): regen api
fix(ui): fix type guards
feat(nodes): add `result_type` to results table, fix types
fix(nodes): do not shadow `list` builtin
feat(nodes): add results router
It doesn't work due to circular imports still
fix(nodes): Result class should use outputs classes, not fields
feat(ui): crude results router
fix(ui): send to canvas in currentimagebuttons not working
feat(nodes): add core metadata builder
feat(nodes): add design doc
feat(nodes): wip latents db stuff
feat(nodes): images_db_service and resources router
feat(nodes): wip images db & router
feat(nodes): update image related names
feat(nodes): update urlservice
feat(nodes): add high-level images service
The problem was the same seed was getting used for the seam painting pass, causing the fried look.
Same issue as if you do img2img on a txt2img with the same seed/prompt.
Thanks to @hipsterusername for teaming up to debug this. We got pretty deep into the weeds.
This commit makes InvokeAI 3.0 to be installable via PyPi.org and the
installer script.
Main changes.
1. Move static web pages into `invokeai/frontend/web` and modify the
API to look for them there. This allows pip to copy the files into the
distribution directory so that user no longer has to be in repo root
to launch.
2. Update invoke.sh and invoke.bat to launch the new web application
properly. This also changes the wording for launching the CLI from
"generate images" to "explore the InvokeAI node system," since I would
not recommend using the CLI to generate images routinely.
3. Fix a bug in the checkpoint converter script that was identified
during testing.
4. Better error reporting when checkpoint converter fails.
5. Rebuild front end.
* added optional middleware prop and new actions needed
* accidental import
* make middleware an array
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
# Application-wide configuration service
This PR creates a new `InvokeAIAppConfig` object that reads
application-wide settings from an init file, the environment, and the
command line.
Arguments and fields are taken from the pydantic definition of the
model. Defaults can be set by creating a yaml configuration file that
has a top-level key of "InvokeAI" and subheadings for each of the
categories returned by `invokeai --help`.
The file looks like this:
[file: invokeai.yaml]
```
InvokeAI:
Paths:
root: /home/lstein/invokeai-main
conf_path: configs/models.yaml
legacy_conf_dir: configs/stable-diffusion
outdir: outputs
embedding_dir: embeddings
lora_dir: loras
autoconvert_dir: null
gfpgan_model_dir: models/gfpgan/GFPGANv1.4.pth
Models:
model: stable-diffusion-1.5
embeddings: true
Memory/Performance:
xformers_enabled: false
sequential_guidance: false
precision: float16
max_loaded_models: 4
always_use_cpu: false
free_gpu_mem: false
Features:
nsfw_checker: true
restore: true
esrgan: true
patchmatch: true
internet_available: true
log_tokenization: false
Cross-Origin Resource Sharing:
allow_origins: []
allow_credentials: true
allow_methods:
- '*'
allow_headers:
- '*'
Web Server:
host: 127.0.0.1
port: 8081
```
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can use any OmegaConf dictionary by passing it to
the config object at initialization time:
```
omegaconf = OmegaConf.load('/tmp/init.yaml')
conf = InvokeAIAppConfig(conf=omegaconf)
```
The default name of the configuration file is `invokeai.yaml`, located
in INVOKEAI_ROOT. You can replace supersede this by providing
anyOmegaConf dictionary object initialization time:
```
omegaconf = OmegaConf.load('/tmp/init.yaml')
conf = InvokeAIAppConfig(conf=omegaconf)
```
By default, InvokeAIAppConfig will parse the contents of `sys.argv` at
initialization time. You may pass a list of strings in the optional
`argv` argument to use instead of the system argv:
```
conf = InvokeAIAppConfig(arg=['--xformers_enabled'])
```
It is also possible to set a value at initialization time. This value
has highest priority.
```
conf = InvokeAIAppConfig(xformers_enabled=True)
```
Any setting can be overwritten by setting an environment variable of
form: "INVOKEAI_<setting>", as in:
```
export INVOKEAI_port=8080
```
Order of precedence (from highest):
1) initialization options
2) command line options
3) environment variable options
4) config file options
5) pydantic defaults
Typical usage:
```
from invokeai.app.services.config import InvokeAIAppConfig
# get global configuration and print its nsfw_checker value
conf = InvokeAIAppConfig()
print(conf.nsfw_checker)
```
Finally, the configuration object is able to recreate its (modified)
yaml file, by calling its `to_yaml()` method:
```
conf = InvokeAIAppConfig(outdir='/tmp', port=8080)
print(conf.to_yaml())
```
# Legacy code removal and porting
This PR replaces Globals with the InvokeAIAppConfig system throughout,
and therefore removes the `globals.py` and `args.py` modules. It also
removes `generate` and the legacy CLI. ***The old CLI and web servers
are now gone.***
I have ported the functionality of the configuration script, the model
installer, and the merge and textual inversion scripts. The `invokeai`
command will now launch `invokeai-node-cli`, and `invokeai-web` will
launch the web server.
I have changed the continuous invocation tests to accommodate the new
command syntax in `invokeai-node-cli`. As a convenience function, you
can also pass invocations to `invokeai-node-cli` (or its alias
`invokeai`) on the command line as as standard input:
```
invokeai-node-cli "t2i --positive_prompt 'banana sushi' --seed 42"
invokeai < invocation_commands.txt
```
- Make environment variable settings case InSenSiTive:
INVOKEAI_MAX_LOADED_MODELS and InvokeAI_Max_Loaded_Models
environment variables will both set `max_loaded_models`
- Updated realesrgan to use new config system.
- Updated textual_inversion_training to use new config system.
- Discovered a race condition when InvokeAIAppConfig is created
at module load time, which makes it impossible to customize
or replace the help message produced with --help on the command
line. To fix this, moved all instances of get_invokeai_config()
from module load time to object initialization time. Makes code
cleaner, too.
- Added `--from_file` argument to `invokeai-node-cli` and changed
github action to match. CI tests will hopefully work now.