The model loader emits events. During testing, it doesn't have access to a fully-mocked events service, so the test fails when attempting to call a nonexistent method. There was a check for this previously, but I accidentally removed it. Restored.
- Remove ABCs, they do not work well with pydantic
- Remove the event type classvar - unused
- Remove clever logic to require an event name - we already get validation for this during schema registration.
- Rename event bases to all end in "Base"
Our events handling and implementation has a couple pain points:
- Adding or removing data from event payloads requires changes wherever the events are dispatched from.
- We have no type safety for events and need to rely on string matching and dict access when interacting with events.
- Frontend types for socket events must be manually typed. This has caused several bugs.
`fastapi-events` has a neat feature where you can create a pydantic model as an event payload, give it an `__event_name__` attr, and then dispatch the model directly.
This allows us to eliminate a layer of indirection and some unpleasant complexity:
- Event handler callbacks get type hints for their event payloads, and can use `isinstance` on them if needed.
- Event payload construction is now the responsibility of the event itself (a pydantic model), not the service. Every event model has a `build` class method, encapsulating this logic. The build methods are provided as few args as possible. For example, `InvocationStartedEvent.build()` gets the invocation instance and queue item, and can choose the data it wants to include in the event payload.
- Frontend event types may be autogenerated from the OpenAPI schema. We use the payload registry feature of `fastapi-events` to collect all payload models into one place, making it trivial to keep our schema and frontend types in sync.
This commit moves the backend over to this improved event handling setup.
Graph, metadata and workflow all take stringified JSON only. This makes the API consistent and means we don't need to do a round-trip of pydantic parsing when handling this data.
It also prevents a failure mode where an uploaded image's metadata, workflow or graph are old and don't match the current schema.
As before, the frontend does strict validation and parsing when loading these values.
The previous super-minimal implementation had a major issue - the saved workflow didn't take into account batched field values. When generating with multiple iterations or dynamic prompts, the same workflow with the first prompt, seed, etc was stored in each image.
As a result, when the batch results in multiple queue items, only one of the images has the correct workflow - the others are mismatched.
To work around this, we can store the _graph_ in the image metadata (alongside the workflow, if generated via workflow editor). When loading a workflow from an image, we can choose to load the workflow or the graph, preferring the workflow.
Internally, we need to update images router image-saving services. The changes are minimal.
To avoid pydantic errors deserializing the graph, when we extract it from the image, we will leave it as stringified JSON and let the frontend's more sophisticated and flexible parsing handle it. The worklow is also changed to just return stringified JSON, so the API is consistent.
`PC_PATH_MAX` doesn't exist for (some?) external drives on macOS. We need error handling when retrieving this value.
Also added error handling for `PC_NAME_MAX` just in case. This does work for me for external drives on macOS, though.
Closes#6277
* introduce new abstraction layer for GPU devices
* add unit test for device abstraction
* fix ruff
* convert TorchDeviceSelect into a stateless class
* move logic to select context-specific execution device into context API
* add mock hardware environments to pytest
* remove dangling mocker fixture
* fix unit test for running on non-CUDA systems
* remove unimplemented get_execution_device() call
* remove autocast precision
* Multiple changes:
1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to
context.models.get_execution_device().
2. Rename TorchDeviceSelect to TorchDevice
3. Added back the legacy public API defined in `invocation_api`, including
choose_precision().
4. Added a config file migration script to accommodate removal of precision=autocast.
* add deprecation warnings to choose_torch_device() and choose_precision()
* fix test crash
* remove app_config argument from choose_torch_device() and choose_torch_dtype()
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
We have had a few bugs with v4 related to file encodings, especially on Windows.
Windows uses its own character encodings instead of `utf-8`, often `cp1252`. Some characters cannot be decoded using `utf-8`, causing `UnicodeDecodeError`.
There are a couple places where this can cause problems:
- In the installer bootstrap, we install or upgrade `pip` and decode the result, using `subprocess`.
The input to this includes the user's home dir. In #6105, the user had one of the problematic characters in their username. `subprocess` attempts and fails to decode the username, which crashes the installer.
To fix this, we need to use `locale.getpreferredencoding()` when executing the command.
- Similarly, in the model install service and config class, we attempt to load a yaml config file. If a problematic character is in the path to the file (which often includes the user's home dir), we can get the same error.
One example is #6129 in which the models.yaml migration fails.
To fix this, we need to open the file with `locale.getpreferredencoding()`.
Renaming the model file to the model name introduces unnecessary contraints on model names.
For example, a model name can technically be any length, but a model _filename_ cannot be too long.
There are also constraints on valid characters for filenames which shouldn't be applied to model record names.
I believe the old behaviour is a holdover from the old system.
Prefer an early return/continue to reduce the indentation of the processor loop. Easier to read.
There are other ways to improve its structure but at first glance, they seem to involve changing the logic in scarier ways.
This must not have been tested after the processors were unified. Needed to shift the logic around so the resume event is handled correctly. Clear and easy fix.
We switched all model paths to be absolute in #5900. In hindsight, this is a mistake, because it makes the `models_dir` non-portable.
This change reverts to the previous model pathing:
- Invoke-managed models (in the `models_dir`) are stored with relative paths
- Non-invoke-managed models (outside the `models_dir`, i.e. in-place installed models) still have absolute paths.
## Why absolute paths make things non-portable
Let's say my `models_dir` is `/media/rhino/invokeai/models/`. In the DB, all model paths will be absolute children of this path, like this:
- `/media/rhino/invokeai/models/sd-1/main/model1.ckpt`
I want to change my `models_dir` to `/home/bat/invokeai/models/`. I update my `invokeai.yaml` file and physically move the files to that directory.
On startup, the app checks for missing models. Because all of my model paths were absolute, they now point to a nonexistent path. All models are broken.
There are a couple options to recover from this situation, neither of which are reasonable:
1. The user must manually update every model's path. Unacceptable UX.
2. On startup, we check for missing models. For each missing model, we compare its path with the last-known models dir. If there is a match, we replace that portion of the path with the new models dir. Then we re-check to see if the path exists. If it does, we update the models DB entry. Brittle and requires a new DB entry for last-known models dir.
It's better to use relative paths for Invoke-managed models.