This should make caching way easier and therefore speed up the image
(re-)creation a lot.
Other small improvements:
- reorder .dockerignore
- rename amd flavor to rocm to align with cuda flavor
- use `user:group` for definitions
- add `--platform=${TARGETPLATFORM}` to base
This PR adds the core of the node-based invocation system first
discussed in https://github.com/invoke-ai/InvokeAI/discussions/597 and
implements it through a basic CLI and API. This supersedes #1047, which
was too far behind to rebase.
## Architecture
### Invocations
The core of the new system is **invocations**, found in
`/ldm/invoke/app/invocations`. These represent individual nodes of
execution, each with inputs and outputs. Core invocations are already
implemented (`txt2img`, `img2img`, `upscale`, `face_restore`) as well as
a debug invocation (`show_image`). To implement a new invocation, all
that is required is to add a new implementation in this folder (there is
a markdown document describing the specifics, though it is slightly
out-of-date).
### Sessions
Invocations and links between them are maintained in a **session**.
These can be queued for invocation (either the next ready node, or all
nodes). Some notes:
* Sessions may be added to at any time (including after invocation), but
may not be modified.
* Links are always added with a node, and are always links from existing
nodes to the new node. These links can be relative "history" links, e.g.
`-1` to link from a previously executed node, and can link either
specific outputs, or can opportunistically link all matching outputs by
name and type by using `*`.
* There are no iteration/looping constructs. Most needs for this could
be solved by either duplicating nodes or cloning sessions. This is open
for discussion, but is a difficult problem to solve in a way that
doesn't make the code even more complex/confusing (especially regarding
node ids and history).
### Services
These make up the core the invocation system, found in
`/ldm/invoke/app/services`. One of the key design philosophies here is
that most components should be replaceable when possible. For example,
if someone wants to use cloud storage for their images, they should be
able to replace the image storage service easily.
The services are broken down as follows (several of these are
intentionally implemented with an initial simple/naïve approach):
* Invoker: Responsible for creating and executing **sessions** and
managing services used to do so.
* Session Manager: Manages session history. An on-disk implementation is
provided, which stores sessions as json files on disk, and caches
recently used sessions for quick access.
* Image Storage: Stores images of multiple types. An on-disk
implementation is provided, which stores images on disk and retains
recently used images in an in-memory cache.
* Invocation Queue: Used to queue invocations for execution. An
in-memory implementation is provided.
* Events: An event system, primarily used with socket.io to support
future web UI integration.
## Apps
Apps are available through the `/scripts/invoke-new.py` script (to-be
integrated/renamed).
### CLI
```
python scripts/invoke-new.py
```
Implements a simple CLI. The CLI creates a single session, and
automatically links all inputs to the previous node's output. Commands
are automatically generated from all invocations, with command options
being automatically generated from invocation inputs. Help is also
available for the cli and for each command, and is very verbose.
Additionally, the CLI supports command piping for single-line entry of
multiple commands. Example:
```
> txt2img --prompt "a cat eating sushi" --steps 20 --seed 1234 | upscale | show_image
```
### API
```
python scripts/invoke-new.py --api --host 0.0.0.0
```
Implements an API using FastAPI with Socket.io support for signaling.
API documentation is available at `http://localhost:9090/docs` or
`http://localhost:9090/redoc`. This includes OpenAPI schema for all
available invocations, session interaction APIs, and image APIs.
Socket.io signals are per-session, and can be subscribed to by session
id. These aren't currently auto-documented, though the code for event
emission is centralized in `/ldm/invoke/app/services/events.py`.
A very simple test html and script are available at
`http://localhost:9090/static/test.html` This demonstrates creating a
session from a graph, invoking it, and receiving signals from Socket.io.
## What's left?
* There are a number of features not currently covered by invocations. I
kept the set of invocations small during core development in order to
simplify refactoring as I went. Now that the invocation code has
stabilized, I'd love some help filling those out!
* There's no image metadata generated. It would be fairly
straightforward (and would make good sense) to serialize either a
session and node reference into an image, or the entire node into the
image. There are a lot of questions to answer around source images,
linked images, etc. though. This history is all stored in the session as
well, and with complex sessions, the metadata in an image may lose its
value. This needs some further discussion.
* We need a list of features (both current and future) that would be
difficult to implement without looping constructs so we can have a good
conversation around it. I'm really hoping we can avoid needing
looping/iteration in the graph execution, since it'll necessitate
separating an execution of a graph into its own concept/system, and will
further complicate the system.
* The API likely needs further filling out to support the UI. I think
using the new API for the current UI is possible, and potentially
interesting, since it could work like the new/demo CLI in a "single
operation at a time" workflow. I don't know how compatible that will be
with our UI goals though. It would be nice to support only a single API
though.
* Deeper separation of systems. I intentionally tried to not touch
Generate or other systems too much, but a lot could be gained by
breaking those apart. Even breaking apart Args into two pieces (command
line arguments and the parser for the current CLI) would make it easier
to maintain. This is probably in the future though.
author Kyle Schouviller <kyle0654@hotmail.com> 1669872800 -0800
committer Kyle Schouviller <kyle0654@hotmail.com> 1676240900 -0800
Adding base node architecture
Fix type annotation errors
Runs and generates, but breaks in saving session
Fix default model value setting. Fix deprecation warning.
Fixed node api
Adding markdown docs
Simplifying Generate construction in apps
[nodes] A few minor changes (#2510)
* Pin api-related requirements
* Remove confusing extra CORS origins list
* Adds response models for HTTP 200
[nodes] Adding graph_execution_state to soon replace session. Adding tests with pytest.
Minor typing fixes
[nodes] Fix some small output query hookups
[node] Fixing some additional typing issues
[nodes] Move and expand graph code. Add base item storage and sqlite implementation.
Update startup to match new code
[nodes] Add callbacks to item storage
[nodes] Adding an InvocationContext object to use for invocations to provide easier extensibility
[nodes] New execution model that handles iteration
[nodes] Fixing the CLI
[nodes] Adding a note to the CLI
[nodes] Split processing thread into separate service
[node] Add error message on node processing failure
Removing old files and duplicated packages
Adding python-multipart
- Add curated set of starter models based on team discussion. The final
list of starter models can be found in
`invokeai/configs/INITIAL_MODELS.yaml`
- To test model installation, I selected and installed all the models on
the list. This led to my discovering that when there are no more starter
models to display, the console front end crashes. So I made a fix to
this in which the entire starter model selection is no longer shown.
- Update model table in 050_INSTALL_MODELS.md
- Add guide to dealing with low-memory situations
- Version is now `v2.3.1`
- add new script `scripts/make_models_markdown_table.py` that parses
INITIAL_MODELS.yaml and creates markdown table for the model installation
documentation file
- update 050_INSTALLING_MODELS.md with above table, and add a warning
about additional license terms that apply to some of the models.
- Final list can be found in invokeai/configs/INITIAL_MODELS.yaml
- After installing all the models, I discovered a bug in the file
selection form that caused a crash when no remaining uninstalled
models remained. So had to fix this.
The sample_to_image method in `ldm.invoke.generator.base` was still
using ckpt-era code. As a result when the WebUI was set to show
"accurate" intermediate images, there'd be a crash. This PR corrects the
problem.
- Closes#2784
- Closes#2775
- Discord member @marcus.llewellyn reported that some civitai
2.1-derived checkpoints were not converting properly (probably
dreambooth-generated):
https://discord.com/channels/1020123559063990373/1078386197589655582/1078387806122025070
- @blessedcoolant tracked this down to a missing key that was used to
derive vector length of the CLIP model used by fetching the second
dimension of the tensor at "cond_stage_model.model.text_projection".
- On inspection, I found that the same second dimension can be recovered
from key 'cond_stage_model.model.ln_final.bias', and use that instead. I
hope this is correct; tested on multiple v1, v2 and inpainting models
and they converted correctly.
- While debugging this, I found and fixed several other issues:
- model download script was not pre-downloading the OpenCLIP
text_encoder or text_tokenizer. This is fixed.
- got rid of legacy code in `ckpt_to_diffuser.py` and replaced with
calls into `model_manager`
- more consistent status reporting in the CLI.
without this change, the project can be installed on 3.9 but not used
this also fixes the container images
Maybe we should re-enable Python 3.9 checks which would have prevented
this.
- Discord member @marcus.llewellyn reported that some civitai 2.1-derived checkpoints were
not converting properly (probably dreambooth-generated):
https://discord.com/channels/1020123559063990373/1078386197589655582/1078387806122025070
- @blessedcoolant tracked this down to a missing key that was used to
derive vector length of the CLIP model used by fetching the second
dimension of the tensor at "cond_stage_model.model.text_projection".
His proposed solution was to hardcode a value of 1024.
- On inspection, I found that the same second dimension can be
recovered from key 'cond_stage_model.model.ln_final.bias', and use
that instead. I hope this is correct; tested on multiple v1, v2 and
inpainting models and they converted correctly.
- While debugging this, I found and fixed several other issues:
- model download script was not pre-downloading the OpenCLIP
text_encoder or text_tokenizer. This is fixed.
- got rid of legacy code in `ckpt_to_diffuser.py` and replaced
with calls into `model_manager`
- more consistent status reporting in the CLI.
Root directory finding algorithm is:
2) use --root argument
2) use INVOKEAI_ROOT environment variable
3) use VIRTUAL_ENV environment variable
4) use ~/invokeai
Since developers are liable to put virtual environments in their
favorite places, not necessarily in the invokeai root directory, this PR
adds a sanity check that looks for the existence of
`VIRTUAL_ENV/invokeai.init`, and moves on to (4) if not found.
# This will constitute v2.3.1+rc2
## Windows installer enhancements
1. resize installer window to give more room for configure and download
forms
2. replace '\' with '/' in directory names to allow user to
drag-and-drop
folders into the dialogue boxes that accept directories.
3. similar change in CLI for the !import_model and !convert_model
commands
4. better error reporting when a model download fails due to network
errors
5. put the launcher scripts into a loop so that menu reappears after
invokeai, merge script, etc exits. User can quit with "Q".
6. do not try to download fp16 of sd-ft-mse-vae, since it doesn't exist.
7. cleaned up status reporting when installing models
8. Detect when install failed for some reason and print helpful error
message rather than stack trace.
9. Detect window size and resize to minimum acceptable values to provide
better display of configure and install forms.
10. Fix a bug in the CLI which prevented diffusers imported by their
repo_ids
from being correctly registered in the current session (though they
install
correctly)
11. Capitalize the "i" in Imported in the autogenerated descriptions.