Commit Graph

81 Commits

Author SHA1 Message Date
Lincoln Stein
3e0fb45dd7
Load single-file checkpoints directly without conversion (#6510)
* use model_class.load_singlefile() instead of converting; works, but performance is poor

* adjust the convert api - not right just yet

* working, needs sql migrator update

* rename migration_11 before conflict merge with main

* Update invokeai/backend/model_manager/load/model_loaders/stable_diffusion.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* Update invokeai/backend/model_manager/load/model_loaders/stable_diffusion.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* implement lightweight version-by-version config migration

* simplified config schema migration code

* associate sdxl config with sdxl VAEs

* remove use of original_config_file in load_single_file()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-27 17:31:28 -04:00
Ryan Dick
14775cc9c4 ruff format 2024-06-27 09:45:13 -04:00
psychedelicious
c7562dd6c0
fix(backend): mps should not use non_blocking
We can get black outputs when moving tensors from CPU to MPS. It appears MPS to CPU is fine. See:
- https://github.com/pytorch/pytorch/issues/107455
- https://discuss.pytorch.org/t/should-we-set-non-blocking-to-true/38234/28

Changes:
- Add properties for each device on `TorchDevice` as a convenience.
- Add `get_non_blocking` static method on `TorchDevice`. This utility takes a torch device and returns the flag to be used for non_blocking when moving a tensor to the device provided.
- Update model patching and caching APIs to use this new utility.

Fixes: #6545
2024-06-27 19:15:23 +10:00
Lincoln Stein
b03073d888
[MM] Add support for probing and loading SDXL VAE checkpoint files (#6524)
* add support for probing and loading SDXL VAE checkpoint files

* broaden regexp probe for SDXL VAEs

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-06-20 02:57:27 +00:00
Lincoln Stein
a3cb5da130
Improve RAM<->VRAM memory copy performance in LoRA patching and elsewhere (#6490)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes requested during penultimate review

* add non-blocking=True parameters to several torch.nn.Module.to() calls, for slight performance increases

* fix ruff errors

* prevent crash on non-cuda-enabled systems

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-13 17:10:03 +00:00
psychedelicious
fde58ce0a3 Merge remote-tracking branch 'origin/main' into lstein/feat/simple-mm2-api 2024-06-07 14:23:41 +10:00
Lincoln Stein
f81b8bc9f6 add support for generic loading of diffusers directories 2024-06-07 13:54:30 +10:00
Lincoln Stein
2871676f79
LoRA patching optimization (#6439)
* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* allow model patcher to optimize away the unpatching step when feasible

* remove lazy_offloading functionality

* do not save original weights if there is a CPU copy of state dict

* Update invokeai/backend/model_manager/load/load_base.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* documentation fixes added during penultimate review

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-06 13:53:35 +00:00
psychedelicious
e7513f6088 docs(mm): add comment in move_model_to_device 2024-06-03 10:56:04 +10:00
Lincoln Stein
2276f327e5
Merge branch 'main' into lstein/feat/simple-mm2-api 2024-06-02 09:45:31 -04:00
Lincoln Stein
21a60af881
when unlocking models, offload_unlocked_models should prune to vram limit only (#6450)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-05-29 03:01:21 +00:00
Lincoln Stein
34e1eb19f9 merge with main and resolve conflicts 2024-05-27 22:20:34 -04:00
Lincoln Stein
532f82cb97
Optimize RAM to VRAM transfer (#6312)
* avoid copying model back from cuda to cpu

* handle models that don't have state dicts

* add assertions that models need a `device()` method

* do not rely on torch.nn.Module having the device() method

* apply all patches after model is on the execution device

* fix model patching in latents too

* log patched tokenizer

* closes #6375

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-05-24 17:06:09 +00:00
Lincoln Stein
7c39929758 support VRAM caching of dict models that lack to() 2024-04-28 13:41:06 -04:00
Lincoln Stein
a26667d3ca make download and convert cache keys safe for filename length 2024-04-28 12:24:36 -04:00
Lincoln Stein
d72f272f16 Address change requests in first round of PR reviews.
Pending:

- Move model install calls into model manager and create passthrus in invocation_context.
- Consider splitting load_model_from_url() into a call to get the path and a call to load the path.
2024-04-24 23:53:30 -04:00
Lincoln Stein
470a39935c fix merge conflicts with main 2024-04-15 09:24:57 -04:00
Lincoln Stein
e93f4d632d
[util] Add generic torch device class (#6174)
* introduce new abstraction layer for GPU devices

* add unit test for device abstraction

* fix ruff

* convert TorchDeviceSelect into a stateless class

* move logic to select context-specific execution device into context API

* add mock hardware environments to pytest

* remove dangling mocker fixture

* fix unit test for running on non-CUDA systems

* remove unimplemented get_execution_device() call

* remove autocast precision

* Multiple changes:

1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to
   context.models.get_execution_device().
2. Rename TorchDeviceSelect to TorchDevice
3. Added back the legacy public API defined in `invocation_api`, including
   choose_precision().
4. Added a config file migration script to accommodate removal of precision=autocast.

* add deprecation warnings to choose_torch_device() and choose_precision()

* fix test crash

* remove app_config argument from choose_torch_device() and choose_torch_dtype()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-04-15 13:12:49 +00:00
Lincoln Stein
3a26c7bb9e fix merge conflicts 2024-04-12 00:58:11 -04:00
Lincoln Stein
df5ebdbc4f add invocation_context.load_ckpt_from_url() method 2024-04-12 00:55:21 -04:00
Lincoln Stein
651c0b39b1 clear cache on all exceptions 2024-04-12 07:19:16 +10:00
Lincoln Stein
46d23cd868 catch RunTimeError during model to() call rather than OutOfMemoryError 2024-04-12 07:19:16 +10:00
Lincoln Stein
579082ac10 [mm] clear the cache entry for a model that got an OOM during loading 2024-04-12 07:19:16 +10:00
psychedelicious
9ab6655491 feat(backend): clean up choose_precision
- Allow user-defined precision on MPS.
- Use more explicit logic to handle all possible cases.
- Add comments.
- Remove the app_config args (they were effectively unused, just get the config using the singleton getter util)
2024-04-07 09:41:05 -04:00
psychedelicious
4068e817d6 fix(mm): typing issues in model cache 2024-04-06 14:35:36 +11:00
psychedelicious
a09d705e4c fix(mm): remove vram check
This check prematurely reports insufficient VRAM on Windows. See #6106 for details.
2024-04-06 14:35:36 +11:00
Lincoln Stein
4571986c63 fix misplaced lock call 2024-04-05 14:32:18 +11:00
Lincoln Stein
812f10730f
adjust free vram calculation for models that will be removed by lazy offloading (#6150)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-04-04 22:51:12 -04:00
psychedelicious
85f53f94f8 feat(mm): include needed vs free in OOM
Gives us a bit more visibility into these errors, which seem to be popping up more frequently with the new MM.
2024-04-04 06:26:15 +11:00
blessedcoolant
e574815413 chore: clean up merge conflicts 2024-04-03 20:28:00 +05:30
blessedcoolant
fb293dcd84 Merge branch 'checkpoint-ip-adapter' of https://github.com/blessedcoolant/InvokeAI into checkpoint-ip-adapter 2024-04-03 20:23:07 +05:30
blessedcoolant
2dcbb7223b fix: use Path for ip_adapter_ckpt_path instead of str 2024-04-03 20:21:03 +05:30
blessedcoolant
67afb1763e wip: Initial implementation of safetensor support for IP Adapter 2024-04-03 12:39:52 +05:30
psychedelicious
59b4a23479 feat(mm): use same pattern for vae converter as others
Add `dump_path` arg to the converter function & save the model to disk inside the conversion function. This is the same pattern as in the other conversion functions.
2024-04-01 12:34:49 +11:00
psychedelicious
13f410478a fix(mm): typing issues in vae loader 2024-04-01 12:34:49 +11:00
psychedelicious
25ff0bf80f fix(mm): return converted vae model instead of path
This was missed in #6072.
2024-04-01 12:34:49 +11:00
Lincoln Stein
3d6d89feb4
[mm] Do not write diffuser model to disk when convert_cache set to zero (#6072)
* pass model config to _load_model

* make conversion work again

* do not write diffusers to disk when convert_cache set to 0

* adding same model to cache twice is a no-op, not an assertion error

* fix issues identified by psychedelicious during pr review

* following conversion, avoid redundant read of cached submodels

* fix error introduced while merging

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-03-29 16:11:08 -04:00
psychedelicious
6d261a5a13 fix(mm): handle relative conversion config paths
I have tested main, controlnet and vae checkpoint conversions.
2024-03-29 10:56:06 -04:00
blessedcoolant
b013d0e064 wip: Initial implementation of safetensor support for IP Adapter 2024-03-27 22:08:14 +05:30
psychedelicious
eb33303e79 fix(mm): handle depth and inpainting models when converting to diffusers
"Normal" models have 4 in-channels, while "Depth" models have 5 and "Inpaint" models have 9.

We need to explicitly tell diffusers the channel count when converting models.

Closes  #6058
2024-03-27 07:48:54 -04:00
Lincoln Stein
27622dfd5e allow checkpoint config files to use root-relative paths 2024-03-22 08:57:45 +11:00
psychedelicious
6c13fa13ea fix(mm): regression from change to legacy conf dir change 2024-03-20 15:05:25 +11:00
Lincoln Stein
c87497fd54
record model_variant in t2i and clip_vision configs (#5989)
- Move base of t2i and clip_vision config models to DiffusersBase, which contains
  a field to record the model variant (e.g. "fp16")
- This restore the ability to load fp16 t2i and clip_vision models
- Also add defensive coding to load the vanilla model when the fp16 model
  has been replaced (or more likely, user's preferences changed since installation)

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-03-19 20:14:12 +00:00
Lincoln Stein
f8df293d2c Revert "fix(mm): provide ckpt config as stream to diffusers"
This reverts commit 9d045964d6.
2024-03-19 14:24:54 +11:00
psychedelicious
9d045964d6 fix(mm): provide ckpt config as stream to diffusers
Fixes converting ckpt main models
2024-03-19 09:24:28 +11:00
Lincoln Stein
71a1740740 Remove core safetensors->diffusers conversion models
- No longer install core conversion models. Use the HuggingFace cache to load
  them if and when needed.

- Call directly into the diffusers library to perform conversions with only shallow
   wrappers around them to massage arguments, etc.

- At root configuration time, do not create all the possible model subdirectories,
  but let them be created and populated at model install time.

- Remove checks for missing core conversion files, since they are no
  longer installed.
2024-03-17 19:13:18 -04:00
Ryan Dick
9ee2e7ff25 Do not override log_memory_usage when debug logs are enabled. The speed cost of log_memory_usage=True is large. It is common to want debug log without enabling log_memory_usage. 2024-03-12 09:48:50 +11:00
Brandon Rising
e52274ecac Experiment with using absolute paths within model management 2024-03-08 15:36:14 -05:00
psychedelicious
132790eebe tidy(nodes): use canonical capitalizations 2024-03-07 10:56:59 +11:00
psychedelicious
7c9128b253 tidy(mm): use canonical capitalization for all model-related enums, classes
For example, "Lora" -> "LoRA", "Vae" -> "VAE".
2024-03-05 23:50:19 +11:00