Commit Graph

298 Commits

Author SHA1 Message Date
psychedelicious
483bdbcb9f fix(nodes): restore type annotations for InvocationContext 2024-02-15 17:30:02 +11:00
psychedelicious
7e5ba2795e feat(nodes): update all invocations to use new invocation context
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them.

Supporting minor changes:
- Patch bump for all nodes that use the context
- Update invocation processor to provide new context
- Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node
- Minor change to `ModelManagerService` to support the new wrapped context
- Fanagling of imports to avoid circular dependencies
2024-02-15 17:30:02 +11:00
psychedelicious
aa089e8108 tidy(nodes): move all field things to fields.py
Unfortunately, this is necessary to prevent circular imports at runtime.
2024-02-15 17:30:02 +11:00
JPPhoto
6a2856e46f Updated field descriptions 2024-01-23 02:26:30 +11:00
Jonathan
892fe62264 Add Ideal Size node to core nodes
The Ideal Size node is useful for High-Res Optimization as it gives the optimum size for creating an initial generation with minimal artifacts (duplication and other strangeness) from today's models.

After inclusion, front end graph generation can be simplified by offloading calculations for HRO initial generation to this node.
2024-01-23 02:26:30 +11:00
psychedelicious
989aaedc7f feat(nodes): add title for cfg rescale mult on denoise_latents 2024-01-03 13:18:50 +11:00
psychedelicious
c42d692ea6
feat: workflow library (#5148)
* chore: bump pydantic to 2.5.2

This release fixes pydantic/pydantic#8175 and allows us to use `JsonValue`

* fix(ui): exclude public/en.json from prettier config

* fix(workflow_records): fix SQLite workflow insertion to ignore duplicates

* feat(backend): update workflows handling

Update workflows handling for Workflow Library.

**Updated Workflow Storage**

"Embedded Workflows" are workflows associated with images, and are now only stored in the image files. "Library Workflows" are not associated with images, and are stored only in DB.

This works out nicely. We have always saved workflows to files, but recently began saving them to the DB in addition to in image files. When that happened, we stopped reading workflows from files, so all the workflows that only existed in images were inaccessible. With this change, access to those workflows is restored, and no workflows are lost.

**Updated Workflow Handling in Nodes**

Prior to this change, workflows were embedded in images by passing the whole workflow JSON to a special workflow field on a node. In the node's `invoke()` function, the node was able to access this workflow and save it with the image. This (inaccurately) models workflows as a property of an image and is rather awkward technically.

A workflow is now a property of a batch/session queue item. It is available in the InvocationContext and therefore available to all nodes during `invoke()`.

**Database Migrations**

Added a `SQLiteMigrator` class to handle database migrations. Migrations were needed to accomodate the DB-related changes in this PR. See the code for details.

The `images`, `workflows` and `session_queue` tables required migrations for this PR, and are using the new migrator. Other tables/services are still creating tables themselves. A followup PR will adapt them to use the migrator.

**Other/Support Changes**

- Add a `has_workflow` column to `images` table to indicate that the image has an embedded workflow.
- Add handling for retrieving the workflow from an image in python. The image file must be fetched, the workflow extracted, and then sent to client, avoiding needing the browser to parse the image file. With the `has_workflow` column, the UI knows if there is a workflow to be fetched, and only fetches when the user requests to load the workflow.
- Add route to get the workflow from an image
- Add CRUD service/routes for the library workflows
- `workflow_images` table and services removed (no longer needed now that embedded workflows are not in the DB)

* feat(ui): updated workflow handling (WIP)

Clientside updates for the backend workflow changes.

Includes roughed-out workflow library UI.

* feat: revert SQLiteMigrator class

Will pursue this in a separate PR.

* feat(nodes): do not overwrite custom node module names

Use a different, simpler method to detect if a node is custom.

* feat(nodes): restore WithWorkflow as no-op class

This class is deprecated and no longer needed. Set its workflow attr value to None (meaning it is now a no-op), and issue a warning when an invocation subclasses it.

* fix(nodes): fix get_workflow from queue item dict func

* feat(backend): add WorkflowRecordListItemDTO

This is the id, name, description, created at and updated at workflow columns/attrs. Used to display lists of workflowsl

* chore(ui): typegen

* feat(ui): add workflow loading, deleting to workflow library UI

* feat(ui): workflow library pagination button styles

* wip

* feat: workflow library WIP

- Save to library
- Duplicate
- Filter/sort
- UI/queries

* feat: workflow library - system graphs - wip

* feat(backend): sync system workflows to db

* fix: merge conflicts

* feat: simplify default workflows

- Rename "system" -> "default"
- Simplify syncing logic
- Update UI to match

* feat(workflows): update default workflows

- Update TextToImage_SD15
- Add TextToImage_SDXL
- Add README

* feat(ui): refine workflow list UI

* fix(workflow_records): typo

* fix(tests): fix tests

* feat(ui): clean up workflow library hooks

* fix(db): fix mis-ordered db cleanup step

It was happening before pruning queue items - should happen afterwards, else you have to restart the app again to free disk space made available by the pruning.

* feat(ui): tweak reset workflow editor translations

* feat(ui): split out workflow redux state

The `nodes` slice is a rather complicated slice. Removing `workflow` makes it a bit more reasonable.

Also helps to flatten state out a bit.

* docs: update default workflows README

* fix: tidy up unused files, unrelated changes

* fix(backend): revert unrelated service organisational changes

* feat(backend): workflow_records.get_many arg "filter_text" -> "query"

* feat(ui): use custom hook in current image buttons

Already in use elsewhere, forgot to use it here.

* fix(ui): remove commented out property

* fix(ui): fix workflow loading

- Different handling for loading from library vs external
- Fix bug where only nodes and edges loaded

* fix(ui): fix save/save-as workflow naming

* fix(ui): fix circular dependency

* fix(db): fix bug with releasing without lock in db.clean()

* fix(db): remove extraneous lock

* chore: bump ruff

* fix(workflow_records): default `category` to `WorkflowCategory.User`

This allows old workflows to validate when reading them from the db or image files.

* hide workflow library buttons if feature is disabled

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-12-09 09:48:38 +11:00
Ryan Dick
984e609c61 (minor) Tweak field ordering and field names for tiling nodes. 2023-11-30 07:53:27 -08:00
Ryan Dick
57e70aaf50 Change input field ordering of CropLatentsCoreInvocation to match ImageCropInvocation. 2023-11-30 07:53:27 -08:00
Ryan Dick
9b863fb9bc Rename CropLatentsInvocation -> CropLatentsCoreInvocation to prevent conflict with custom node. And other minor tidying. 2023-11-30 07:53:27 -08:00
Ryan Dick
7cab51745b Improve documentation of CropLatentsInvocation. 2023-11-30 07:53:27 -08:00
Ryan Dick
18c6ff427e Use LATENT_SCALE_FACTOR = 8 constant in CropLatentsInvocation. 2023-11-30 07:53:27 -08:00
Ryan Dick
843f2d71d6 Copy CropLatentsInvocation from 74647fa9c1/images_to_grids.py (L1117C1-L1167C80). 2023-11-30 07:53:27 -08:00
Damian Stewart
0beb08686c
Add CFG Rescale option for supporting zero-terminal SNR models (#4335)
* add support for CFG rescale

* fix typo

* move rescale position and tweak docs

* move input position

* implement suggestions from github and discord

* cleanup unused code

* add back dropped FieldDescription

* fix(ui): revert unrelated UI changes

* chore(nodes): bump denoise_latents version 1.4.0 -> 1.5.0

* feat(nodes): add cfg_rescale_multiplier to metadata node

* feat(ui): add cfg rescale multiplier to linear UI

- add param to state
- update graph builders
- add UI under advanced
- add metadata handling & recall
- regen types

* chore: black

* fix(backend): make `StableDiffusionGeneratorPipeline._rescale_cfg()` staticmethod

This doesn't need access to class.

* feat(backend): add docstring for `_rescale_cfg()` method

* feat(ui): update cfg rescale mult translation string

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-11-30 20:55:20 +11:00
psychedelicious
86a74e929a feat(ui): add support for custom field types
Node authors may now create their own arbitrary/custom field types. Any pydantic model is supported.

Two notes:
1. Your field type's class name must be unique.

Suggest prefixing fields with something related to the node pack as a kind of namespace.

2. Custom field types function as connection-only fields.

For example, if your custom field has string attributes, you will not get a text input for that attribute when you give a node a field with your custom type.

This is the same behaviour as other complex fields that don't have custom UIs in the workflow editor - like, say, a string collection.

feat(ui): fix tooltips for custom types

We need to hold onto the original type of the field so they don't all just show up as "Unknown".

fix(ui): fix ts error with custom fields

feat(ui): custom field types connection validation

In the initial commit, a custom field's original type was added to the *field templates* only as `originalType`. Custom fields' `type` property was `"Custom"`*. This allowed for type safety throughout the UI logic.

*Actually, it was `"Unknown"`, but I changed it to custom for clarity.

Connection validation logic, however, uses the *field instance* of the node/field. Like the templates, *field instances* with custom types have their `type` set to `"Custom"`, but they didn't have an `originalType` property. As a result, all custom fields could be connected to all other custom fields.

To resolve this, we need to add `originalType` to the *field instances*, then switch the validation logic to use this instead of `type`.

This ended up needing a bit of fanagling:

- If we make `originalType` a required property on field instances, existing workflows will break during connection validation, because they won't have this property. We'd need a new layer of logic to migrate the workflows, adding the new `originalType` property.

While this layer is probably needed anyways, typing `originalType` as optional is much simpler. Workflow migration logic can come layer.

(Technically, we could remove all references to field types from the workflow files, and let the templates hold all this information. This feels like a significant change and I'm reluctant to do it now.)

- Because `originalType` is optional, anywhere we care about the type of a field, we need to use it over `type`. So there are a number of `field.originalType ?? field.type` expressions. This is a bit of a gotcha, we'll need to remember this in the future.

- We use `Array.prototype.includes()` often in the workflow editor, e.g. `COLLECTION_TYPES.includes(type)`. In these cases, the const array is of type `FieldType[]`, and `type` is is `FieldType`.

Because we now support custom types, the arg `type` is now widened from `FieldType` to `string`.

This causes a TS error. This behaviour is somewhat controversial (see https://github.com/microsoft/TypeScript/issues/14520). These expressions are now rewritten as `COLLECTION_TYPES.some((t) => t === type)` to satisfy TS. It's logically equivalent.

fix(ui): typo

feat(ui): add CustomCollection and CustomPolymorphic field types

feat(ui): add validation for CustomCollection & CustomPolymorphic types

- Update connection validation for custom types
- Use simple string parsing to determine if a field is a collection or polymorphic type.
- No longer need to keep a list of collection and polymorphic types.
- Added runtime checks in `baseinvocation.py` to ensure no fields are named in such a way that it could mess up the new parsing

chore(ui): remove errant console.log

fix(ui): rename 'nodes.currentConnectionFieldType' -> 'nodes.connectionStartFieldType'

This was confusingly named and kept tripping me up. Renamed to be consistent with the `reactflow` `ConnectionStartParams` type.

fix(ui): fix ts error

feat(nodes): add runtime check for custom field names

"Custom", "CustomCollection" and "CustomPolymorphic" are reserved field names.

chore(ui): add TODO for revising field type names

wip refactor fieldtype structured

wip refactor field types

wip refactor types

wip refactor types

fix node layout

refactor field types

chore: mypy

organisation

organisation

organisation

fix(nodes): fix field orig_required, field_kind and input statuses

feat(nodes): remove broken implementation of default_factory on InputField

Use of this could break connection validation due to the difference in node schemas required fields and invoke() required args.

Removed entirely for now. It wasn't ever actually used by the system, because all graphs always had values provided for fields where default_factory was used.

Also, pydantic is smart enough to not reuse the same object when specifying a default value - it clones the object first. So, the common pattern of `default_factory=list` is extraneous. It can just be `default=[]`.

fix(nodes): fix InputField name validation

workflow validation

validation

chore: ruff

feat(nodes): fix up baseinvocation comments

fix(ui): improve typing & logic of buildFieldInputTemplate

improved error handling in parseFieldType

fix: back compat for deprecated default_factory and UIType

feat(nodes): do not show node packs loaded log if none loaded

chore(ui): typegen
2023-11-29 10:49:31 +11:00
Ryan Dick
d756c9b10a Fix double LoRA patching of the UNet. This was presumably added by accident due to a previous merge conflict. 2023-11-17 12:05:04 -08:00
psychedelicious
5cb3fdb64c fix(nodes): bump version of nodes post-pydantic v2 2023-11-16 11:14:26 +11:00
psychedelicious
99a8ebe3a0 chore: ruff check - fix flake8-bugbear 2023-11-11 10:55:28 +11:00
psychedelicious
3a136420d5 chore: ruff check - fix flake8-comprensions 2023-11-11 10:55:23 +11:00
Brandon Rising
41f7aa6ab4 Remove unused import: 2023-11-09 15:06:01 -05:00
Brandon Rising
9bec755198 Upstream diffusers PR was merged, this no longer seems necessary 2023-11-09 15:02:24 -05:00
psychedelicious
6aa87f973e fix(nodes): create app/shared/ module to prevent circular imports
We have a number of shared classes, objects, and functions that are used in multiple places. This causes circular import issues.

This commit creates a new `app/shared/` module to hold these shared classes, objects, and functions.

Initially, only `FreeUConfig` and `FieldDescriptions` are moved here. This resolves a circular import issue with custom nodes.

Other shared classes, objects, and functions will be moved here in future commits.
2023-11-09 16:41:55 +11:00
Kent Keirsey
e66d0f7372
Merge branch 'main' into feat/nodes/freeu 2023-11-06 05:39:58 -08:00
Ryan Dick
379d68f595 Patch LoRA on device when model is already on device. 2023-11-02 10:03:17 -07:00
psychedelicious
f0db4d36e4 feat: metadata refactor
- Refactor how metadata is handled to support a user-defined metadata in graphs
- Update workflow embed handling
- Update UI to work with these changes
- Update tests to support metadata/workflow changes
2023-10-20 12:05:13 +11:00
Ryan Dick
a078efc0f2 Merge branch 'main' into ryan/multi-image-ip 2023-10-18 08:59:12 -04:00
Millun Atluri
001bba1719
Merge branch 'main' into feat/nodes/freeu 2023-10-17 15:58:00 +11:00
psychedelicious
c238a7f18b feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-17 14:59:25 +11:00
Ryan Dick
35ebc9e18d Bump invocation versions for the multi-image IP feature. 2023-10-14 13:28:50 -04:00
Ryan Dick
8464450a53 Add support for multi-image IP-Adapter. 2023-10-14 12:50:33 -04:00
psychedelicious
402cf9b0ee feat: refactor services folder/module structure
Refactor services folder/module structure.

**Motivation**

While working on our services I've repeatedly encountered circular imports and a general lack of clarity regarding where to put things. The structure introduced goes a long way towards resolving those issues, setting us up for a clean structure going forward.

**Services**

Services are now in their own folder with a few files:

- `services/{service_name}/__init__.py`: init as needed, mostly empty now
- `services/{service_name}/{service_name}_base.py`: the base class for the service
- `services/{service_name}/{service_name}_{impl_type}.py`: the default concrete implementation of the service - typically one of `sqlite`, `default`, or `memory`
- `services/{service_name}/{service_name}_common.py`: any common items - models, exceptions, utilities, etc

Though it's a bit verbose to have the service name both as the folder name and the prefix for files, I found it is _extremely_ confusing to have all of the base classes just be named `base.py`. So, at the cost of some verbosity when importing things, I've included the service name in the filename.

There are some minor logic changes. For example, in `InvocationProcessor`, instead of assigning the model manager service to a variable to be used later in the file, the service is used directly via the `Invoker`.

**Shared**

Things that are used across disparate services are in `services/shared/`:

- `default_graphs.py`: previously in `services/`
- `graphs.py`: previously in `services/`
- `paginatation`: generic pagination models used in a few services
- `sqlite`: the `SqliteDatabase` class, other sqlite-specific things
2023-10-12 12:15:06 -04:00
psychedelicious
15b33ad501 feat(nodes): add freeu support
Add support for FreeU. See:
- https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu
- https://github.com/ChenyangSi/FreeU

Implementation:
- `ModelPatcher.apply_freeu()` handles the enabling freeu (which is very simple with diffusers).
- `FreeUConfig` model added to hold the hyperparameters.
- `freeu_config` added as optional sub-field on `UNetField`.
- `FreeUInvocation` added, works like LoRA - chain it to add the FreeU config to the UNet
- No support for model-dependent presets, this will be a future workflow editor enhancement

Closes #4845
2023-10-11 13:49:28 +11:00
Ryan Dick
9c720da021 Bump DenoiseLatentsInvocation version. 2023-10-06 20:43:43 -04:00
Ryan Dick
971ccfb081 Refactor multi-IP-Adapter to clean up the interface around changing scales. 2023-10-06 20:43:43 -04:00
Ryan Dick
9403672ac0 Bugfix for multi-ip-adapter in DenoiseLatentsInvocation. 2023-10-06 20:43:43 -04:00
Ryan Dick
78828b6b9c WIP - Accept a list of IPAdapterFields in DenoiseLatents. 2023-10-06 20:43:43 -04:00
Ryan Dick
78377469db
Add support for T2I-Adapter in node workflows (#4612)
* Bump diffusers to 0.21.2.

* Add T2IAdapterInvocation boilerplate.

* Add T2I-Adapter model to model-management.

* (minor) Tidy prepare_control_image(...).

* Add logic to run the T2I-Adapter models at the start of the DenoiseLatentsInvocation.

* Add logic for applying T2I-Adapter weights and accumulating.

* Add T2IAdapter to MODEL_CLASSES map.

* yarn typegen

* Add model probes for T2I-Adapter models.

* Add all of the frontend boilerplate required to use T2I-Adapter in the nodes editor.

* Add T2IAdapterModel.convert_if_required(...).

* Fix errors in T2I-Adapter input image sizing logic.

* Fix bug with handling of multiple T2I-Adapters.

* black / flake8

* Fix typo

* yarn build

* Add num_channels param to prepare_control_image(...).

* Link to upstream diffusers bugfix PR that currently requires a workaround.

* feat: Add Color Map Preprocessor

Needed for the color T2I Adapter

* feat: Add Color Map Preprocessor to Linear UI

* Revert "feat: Add Color Map Preprocessor"

This reverts commit a1119a00bf.

* Revert "feat: Add Color Map Preprocessor to Linear UI"

This reverts commit bd8a9b82d8.

* Fix T2I-Adapter field rendering in workflow editor.

* yarn build, yarn typegen

---------

Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-10-05 16:29:16 +11:00
psychedelicious
144ede031e feat(nodes): remove ui_type overrides for polymorphic fields 2023-09-21 10:00:17 +10:00
Kevin Turner
f222b871e9 Merge remote-tracking branch 'origin/main' into feat/taesd
# Conflicts:
#	invokeai/backend/model_management/model_probe.py
2023-09-20 10:46:55 -07:00
user1
ced297ed21 Initial implementation of IP-Adapter "begin_step_percent" and "end_step_percent" for controlling on which steps IP-Adapter is applied in the denoising loop. 2023-09-16 08:24:12 -07:00
Ryan Dick
343df03a92 isort 2023-09-15 13:18:00 -04:00
Ryan Dick
b57acb7353 Merge branch 'main' into feat/ip-adapter 2023-09-15 13:15:25 -04:00
Kent Keirsey
afe9756667
Merge branch 'main' into feat/taesd 2023-09-15 12:19:19 -04:00
Ryan Dick
fe19f11abf Bump DenoiseLatentsInvocation minor version. 2023-09-14 16:54:07 -04:00
Ryan Dick
781e8521d5 Eliminate the need for IPAdapter.initialize(). 2023-09-14 15:02:59 -04:00
Ryan Dick
d114d0ba95 Remove need for the image_encoder param in IPAdapter.initialize(). 2023-09-14 14:14:35 -04:00
Ryan Dick
388554448a Add CLIP Vision model to IP-Adapter info and use this to infer which model to use. 2023-09-14 11:57:53 -04:00
Ryan Dick
6d0ea42a94 Get CLIPVision model download from HF working. 2023-09-14 09:54:10 -04:00
Ryan Dick
2c1100509f Add BaseModelType.Any to be used by CLIPVisionModel. 2023-09-14 08:19:55 -04:00
Ryan
b7296000e4 made MPS calls conditional on MPS actually being the chosen device with backend available 2023-09-13 19:33:43 -04:00