Commit Graph

21 Commits

Author SHA1 Message Date
psychedelicious
2cb51bff11 refactor(nodes): merge processors
Consolidate graph processing logic into session processor.

With graphs as the unit of work, and the session queue distributing graphs, we no longer need the invocation queue or processor.

Instead, the session processor dequeues the next session and processes it in a simple loop, greatly simplifying the app.

- Remove `graph_execution_manager` service.
- Remove `queue` (invocation queue) service.
- Remove `processor` (invocation processor) service.
- Remove queue-related logic from `Invoker`. It now only starts and stops the services, providing them with access to other services.
- Remove unused `invocation_retrieval_error` and `session_retrieval_error` events, these are no longer needed.
- Clean up stats service now that it is less coupled to the rest of the app.
- Refactor cancellation logic - cancellations now originate from session queue (i.e. HTTP cancel endpoint) and are emitted as events. Processor gets the events and sets the canceled event. Access to this event is provided to the invocation context for e.g. the step callback.
- Remove `sessions` router; it provided access to `graph_executions` but that no longer exists.
2024-02-20 09:54:01 +11:00
psychedelicious
be8b99eed5 final tidying before marking PR as ready for review
- Replace AnyModelLoader with ModelLoaderRegistry
- Fix type check errors in multiple files
- Remove apparently unneeded `get_model_config_enum()` method from model manager
- Remove last vestiges of old model manager
- Updated tests and documentation

resolve conflict with seamless.py
2024-02-19 08:16:56 +11:00
Lincoln Stein
ba1f8878dd Fix issues identified during PR review by RyanjDick and brandonrising
- ModelMetadataStoreService is now injected into ModelRecordStoreService
  (these two services are really joined at the hip, and should someday be merged)
- ModelRecordStoreService is now injected into ModelManagerService
- Reduced timeout value for the various installer and download wait*() methods
- Introduced a Mock modelmanager for testing
- Removed bare print() statement with _logger in the install helper backend.
- Removed unused code from model loader init file
- Made `locker` a private variable in the `LoadedModel` object.
- Fixed up model merge frontend (will be deprecated anyway!)
2024-02-19 08:16:56 +11:00
Lincoln Stein
94e8d1b6d5 make model manager v2 ready for PR review
- Replace legacy model manager service with the v2 manager.

- Update invocations to use new load interface.

- Fixed many but not all type checking errors in the invocations. Most
  were unrelated to model manager

- Updated routes. All the new routes live under the route tag
  `model_manager_v2`. To avoid confusion with the old routes,
  they have the URL prefix `/api/v2/models`. The old routes
  have been de-registered.

- Added a pytest for the loader.

- Updated documentation in contributing/MODEL_MANAGER.md
2024-02-15 18:00:08 +11:00
Lincoln Stein
dfcf38be91 BREAKING CHANGES: invocations now require model key, not base/type/name
- Implement new model loader and modify invocations and embeddings

- Finish implementation loaders for all models currently supported by
  InvokeAI.

- Move lora, textual_inversion, and model patching support into
  backend/embeddings.

- Restore support for model cache statistics collection (a little ugly,
  needs work).

- Fixed up invocations that load and patch models.

- Move seamless and silencewarnings utils into better location
2024-02-15 17:56:01 +11:00
psychedelicious
0dc6cb0535 feat(nodes): do not log stats errors
The stats service was logging error messages when attempting to retrieve stats for a graph that it wasn't tracking. This was rather noisy.

Instead of logging these errors within the service, we now will just raise the error and let the consumer of the service decide whether or not to log. Our usage of the service at this time is to suppress errors - we don't want to log anything to the console.

Note: With the improvements in the previous two commits, we shouldn't get these errors moving forward, but I still think this change is correct.
2024-02-07 11:26:15 +11:00
psychedelicious
0976ddba23 chore(invocation-stats): improve types in _prune_stale_stats 2024-02-03 07:34:06 -05:00
psychedelicious
3ebb806410 fix(invocation-stats): use appropriate method to get the type of an invocation 2024-02-03 07:34:06 -05:00
psychedelicious
88c08bbfc7 fix(item-storage-memory): throw when requested item does not exist
- `ItemStorageMemory.get` now throws an `ItemNotFoundError` when the requested `item_id` is not found.
- Update docstrings in ABC and tests.

The new memory item storage implementation implemented the `get` method incorrectly, by returning `None` if the item didn't exist.

The ABC typed `get` as returning `T`, while the SQLite implementation typed `get` as returning `Optional[T]`. The SQLite implementation was referenced when writing the memory implementation.

This mismatched typing is a violation of the Liskov substitution principle, because the signature of the implementation of `get` in the implementation is wider than the abstract class's definition. Using `pyright` in strict mode catches this.

In `invocation_stats_default`, this introduced an error. The `_prune_stats` method calls `get`, expecting the method to throw if the item is not found. If the graph is no longer stored in the bounded item storage, we will call `is_complete()` on `None`, causing the error.

Note: This error condition never arose the SQLite implementation because it parsed the item with pydantic before returning it, which would throw if the item was not found. It implicitly threw, while the memory implementation did not.
2024-02-03 07:34:06 -05:00
psychedelicious
4410ecf62c fix(stats): log errors at error level
They were erroneously at warning before.
2024-02-01 08:50:56 +11:00
psychedelicious
9f6b9d4d23 fix(stats): preserve stack when raising GESStatsNotFoundError 2024-02-01 08:50:56 +11:00
psychedelicious
b24e8dd829 feat(stats): refactor InvocationStatsService to output stats as dataclasses
This allows the stats to be written to disk as JSON and analyzed.

- Add dataclasses to hold stats.
- Move stats pretty-print logic to `__str__` of the new `InvocationStatsSummary` class.
- Add `get_stats` and `dump_stats` methods to `InvocationStatsServiceBase`.
- `InvocationStatsService` now throws if stats are requested for a session it doesn't know about. This avoids needing to do a lot of messy null checks.
- Update `DefaultInvocationProcessor` to use the new stats methods and suppresses the new errors.
2024-02-01 08:50:56 +11:00
Ryan Dick
296c861e7d Handle bad id in log_stats(...). 2024-01-13 15:19:57 -05:00
Ryan Dick
aa45d21fd2 Reduce the number of graph_execution_manager.get(...) calls from the InvocationStatsService. 2024-01-13 15:19:57 -05:00
Ryan Dick
ac42513da9 Remove unused reset_all_stats(...). 2024-01-13 15:19:57 -05:00
Ryan Dick
e2387546fe Rename GIG -> GB. And move it to where it's being used. 2024-01-13 15:19:57 -05:00
Ryan Dick
c8929b35f0 Refactor the invocation stats service for better readability and to support reporting the execution wall time. 2024-01-13 15:19:57 -05:00
psychedelicious
99a8ebe3a0 chore: ruff check - fix flake8-bugbear 2023-11-11 10:55:28 +11:00
psychedelicious
3a136420d5 chore: ruff check - fix flake8-comprensions 2023-11-11 10:55:23 +11:00
psychedelicious
c238a7f18b feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-17 14:59:25 +11:00
psychedelicious
402cf9b0ee feat: refactor services folder/module structure
Refactor services folder/module structure.

**Motivation**

While working on our services I've repeatedly encountered circular imports and a general lack of clarity regarding where to put things. The structure introduced goes a long way towards resolving those issues, setting us up for a clean structure going forward.

**Services**

Services are now in their own folder with a few files:

- `services/{service_name}/__init__.py`: init as needed, mostly empty now
- `services/{service_name}/{service_name}_base.py`: the base class for the service
- `services/{service_name}/{service_name}_{impl_type}.py`: the default concrete implementation of the service - typically one of `sqlite`, `default`, or `memory`
- `services/{service_name}/{service_name}_common.py`: any common items - models, exceptions, utilities, etc

Though it's a bit verbose to have the service name both as the folder name and the prefix for files, I found it is _extremely_ confusing to have all of the base classes just be named `base.py`. So, at the cost of some verbosity when importing things, I've included the service name in the filename.

There are some minor logic changes. For example, in `InvocationProcessor`, instead of assigning the model manager service to a variable to be used later in the file, the service is used directly via the `Invoker`.

**Shared**

Things that are used across disparate services are in `services/shared/`:

- `default_graphs.py`: previously in `services/`
- `graphs.py`: previously in `services/`
- `paginatation`: generic pagination models used in a few services
- `sqlite`: the `SqliteDatabase` class, other sqlite-specific things
2023-10-12 12:15:06 -04:00