Commit Graph

60 Commits

Author SHA1 Message Date
psychedelicious
4ce21087d3 fix(nodes): restore type annotations for InvocationContext 2024-03-01 10:42:33 +11:00
psychedelicious
8637c40661 feat(nodes): update all invocations to use new invocation context
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them.

Supporting minor changes:
- Patch bump for all nodes that use the context
- Update invocation processor to provide new context
- Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node
- Minor change to `ModelManagerService` to support the new wrapped context
- Fanagling of imports to avoid circular dependencies
2024-03-01 10:42:33 +11:00
psychedelicious
992b02aa65 tidy(nodes): move all field things to fields.py
Unfortunately, this is necessary to prevent circular imports at runtime.
2024-03-01 10:42:33 +11:00
psychedelicious
86a74e929a feat(ui): add support for custom field types
Node authors may now create their own arbitrary/custom field types. Any pydantic model is supported.

Two notes:
1. Your field type's class name must be unique.

Suggest prefixing fields with something related to the node pack as a kind of namespace.

2. Custom field types function as connection-only fields.

For example, if your custom field has string attributes, you will not get a text input for that attribute when you give a node a field with your custom type.

This is the same behaviour as other complex fields that don't have custom UIs in the workflow editor - like, say, a string collection.

feat(ui): fix tooltips for custom types

We need to hold onto the original type of the field so they don't all just show up as "Unknown".

fix(ui): fix ts error with custom fields

feat(ui): custom field types connection validation

In the initial commit, a custom field's original type was added to the *field templates* only as `originalType`. Custom fields' `type` property was `"Custom"`*. This allowed for type safety throughout the UI logic.

*Actually, it was `"Unknown"`, but I changed it to custom for clarity.

Connection validation logic, however, uses the *field instance* of the node/field. Like the templates, *field instances* with custom types have their `type` set to `"Custom"`, but they didn't have an `originalType` property. As a result, all custom fields could be connected to all other custom fields.

To resolve this, we need to add `originalType` to the *field instances*, then switch the validation logic to use this instead of `type`.

This ended up needing a bit of fanagling:

- If we make `originalType` a required property on field instances, existing workflows will break during connection validation, because they won't have this property. We'd need a new layer of logic to migrate the workflows, adding the new `originalType` property.

While this layer is probably needed anyways, typing `originalType` as optional is much simpler. Workflow migration logic can come layer.

(Technically, we could remove all references to field types from the workflow files, and let the templates hold all this information. This feels like a significant change and I'm reluctant to do it now.)

- Because `originalType` is optional, anywhere we care about the type of a field, we need to use it over `type`. So there are a number of `field.originalType ?? field.type` expressions. This is a bit of a gotcha, we'll need to remember this in the future.

- We use `Array.prototype.includes()` often in the workflow editor, e.g. `COLLECTION_TYPES.includes(type)`. In these cases, the const array is of type `FieldType[]`, and `type` is is `FieldType`.

Because we now support custom types, the arg `type` is now widened from `FieldType` to `string`.

This causes a TS error. This behaviour is somewhat controversial (see https://github.com/microsoft/TypeScript/issues/14520). These expressions are now rewritten as `COLLECTION_TYPES.some((t) => t === type)` to satisfy TS. It's logically equivalent.

fix(ui): typo

feat(ui): add CustomCollection and CustomPolymorphic field types

feat(ui): add validation for CustomCollection & CustomPolymorphic types

- Update connection validation for custom types
- Use simple string parsing to determine if a field is a collection or polymorphic type.
- No longer need to keep a list of collection and polymorphic types.
- Added runtime checks in `baseinvocation.py` to ensure no fields are named in such a way that it could mess up the new parsing

chore(ui): remove errant console.log

fix(ui): rename 'nodes.currentConnectionFieldType' -> 'nodes.connectionStartFieldType'

This was confusingly named and kept tripping me up. Renamed to be consistent with the `reactflow` `ConnectionStartParams` type.

fix(ui): fix ts error

feat(nodes): add runtime check for custom field names

"Custom", "CustomCollection" and "CustomPolymorphic" are reserved field names.

chore(ui): add TODO for revising field type names

wip refactor fieldtype structured

wip refactor field types

wip refactor types

wip refactor types

fix node layout

refactor field types

chore: mypy

organisation

organisation

organisation

fix(nodes): fix field orig_required, field_kind and input statuses

feat(nodes): remove broken implementation of default_factory on InputField

Use of this could break connection validation due to the difference in node schemas required fields and invoke() required args.

Removed entirely for now. It wasn't ever actually used by the system, because all graphs always had values provided for fields where default_factory was used.

Also, pydantic is smart enough to not reuse the same object when specifying a default value - it clones the object first. So, the common pattern of `default_factory=list` is extraneous. It can just be `default=[]`.

fix(nodes): fix InputField name validation

workflow validation

validation

chore: ruff

feat(nodes): fix up baseinvocation comments

fix(ui): improve typing & logic of buildFieldInputTemplate

improved error handling in parseFieldType

fix: back compat for deprecated default_factory and UIType

feat(nodes): do not show node packs loaded log if none loaded

chore(ui): typegen
2023-11-29 10:49:31 +11:00
psychedelicious
6aa87f973e fix(nodes): create app/shared/ module to prevent circular imports
We have a number of shared classes, objects, and functions that are used in multiple places. This causes circular import issues.

This commit creates a new `app/shared/` module to hold these shared classes, objects, and functions.

Initially, only `FreeUConfig` and `FieldDescriptions` are moved here. This resolves a circular import issue with custom nodes.

Other shared classes, objects, and functions will be moved here in future commits.
2023-11-09 16:41:55 +11:00
Millun Atluri
4cfd55936c run black formatting 2023-11-07 16:06:18 +11:00
Millun Atluri
5c3a27aac6 fixed sorts 2023-11-07 16:03:06 +11:00
Millun Atluri
d573a23090 Moved FreeU Config Import 2023-11-07 15:48:53 +11:00
Millun Atluri
001bba1719
Merge branch 'main' into feat/nodes/freeu 2023-10-17 15:58:00 +11:00
psychedelicious
c238a7f18b feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-17 14:59:25 +11:00
psychedelicious
15b33ad501 feat(nodes): add freeu support
Add support for FreeU. See:
- https://huggingface.co/docs/diffusers/main/en/using-diffusers/freeu
- https://github.com/ChenyangSi/FreeU

Implementation:
- `ModelPatcher.apply_freeu()` handles the enabling freeu (which is very simple with diffusers).
- `FreeUConfig` model added to hold the hyperparameters.
- `freeu_config` added as optional sub-field on `UNetField`.
- `FreeUInvocation` added, works like LoRA - chain it to add the FreeU config to the UNet
- No support for model-dependent presets, this will be a future workflow editor enhancement

Closes #4845
2023-10-11 13:49:28 +11:00
psychedelicious
d9148fb619 feat(nodes): add version to node schemas
The `@invocation` decorator is extended with an optional `version` arg. On execution of the decorator, the version string is parsed using the `semver` package (this was an indirect dependency and has been added to `pyproject.toml`).

All built-in nodes are set with `version="1.0.0"`.

The version is added to the OpenAPI Schema for consumption by the client.
2023-09-04 19:08:18 +10:00
Sergey Borisov
8fa2302956 Fix name 2023-09-02 04:37:11 +03:00
Sergey Borisov
9c3405e0c0 Fix sdxl lora loader input definitions, fix namings 2023-09-02 04:34:17 +03:00
blessedcoolant
ba2048dbc6 fix: SDXL Lora Loader not showing weight input 2023-09-02 10:47:55 +12:00
psychedelicious
044d4c107a feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.

The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.

Category is a new invocation metadata, but it is not used by the frontend just yet.

- `@invocation()` decorator for invocations

```py
@invocation(
    "sdxl_compel_prompt",
    title="SDXL Prompt",
    tags=["sdxl", "compel", "prompt"],
    category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
    ...
```

- `@invocation_output()` decorator for invocation outputs

```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
    ...
```

- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 18:35:12 +10:00
blessedcoolant
6db19a8dee fix: Connection type on Seamless Node VAE Input 2023-08-29 04:15:15 +12:00
blessedcoolant
ef58635a76 chore: black lint 2023-08-29 04:04:03 +12:00
Kent Keirsey
421f5b7d75 Seamless Updates 2023-08-28 08:43:08 -04:00
blessedcoolant
3ef36707a8 chore: Black lint 2023-08-28 23:10:00 +12:00
Kent Keirsey
1f476692da Seamless fixes 2023-08-28 00:10:46 -04:00
Kent Keirsey
5fdd25501b updates per stalkers comments 2023-08-27 22:54:53 -04:00
Kent Keirsey
19e0f360e7 Fix vae fields 2023-08-27 15:05:10 -04:00
Kent Keirsey
ea40a7844a add VAE 2023-08-27 14:53:57 -04:00
Kent Keirsey
3de45af734 updates 2023-08-27 14:13:00 -04:00
psychedelicious
5292eda0e4 feat(nodes): remove "Loader" from model nodes
They are not loaders, they are selectors - remove this to reduce confusion.
2023-08-21 19:17:36 +10:00
Martin Kristiansen
537ae2f901 Resolving merge conflicts for flake8 2023-08-18 15:52:04 +10:00
psychedelicious
fa884134d9 feat: rename ui_type_hint to ui_type
Just a bit more succinct while not losing any clarity.
2023-08-16 09:54:38 +10:00
psychedelicious
c48fd9c083 feat(nodes): refactor parameter/primitive nodes
Refine concept of "parameter" nodes to "primitives":
- integer
- float
- string
- boolean
- image
- latents
- conditioning
- color

Each primitive has:
- A field definition, if it is not already python primitive value. The field is how this primitive value is passed between nodes. Collections are lists of the field in node definitions. ex: `ImageField` & `list[ImageField]`
- A single output class. ex: `ImageOutput`
- A collection output class. ex: `ImageCollectionOutput`
- A node, which functions to load or pass on the primitive value. ex: `ImageInvocation` (in this case, `ImageInvocation` replaces `LoadImage`)

Plus a number of related changes:
- Reorganize these into `primitives.py`
- Update all nodes and logic to use primitives
- Consolidate "prompt" outputs into "string" & "mask" into "image" (there's no reason for these to be different, the function identically)
- Update default graphs & tests
- Regen frontend types & minor frontend tidy related to changes
2023-08-16 09:54:38 +10:00
psychedelicious
f49fc7fb55 feat: node editor
squashed rebase on main after backendd refactor
2023-08-16 09:54:38 +10:00
StAlKeR7779
0d3c27f46c Fix typo
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-08-04 11:44:56 -04:00
Sergey Borisov
1ac14a1e43 add sdxl lora support 2023-08-04 11:44:56 -04:00
Brandon Rising
2b7b3dd4ba Run python black 2023-07-28 09:46:44 -04:00
Brandon Rising
f7bb4c3f05 Remove more files no longer needed in main 2023-07-27 10:49:43 -04:00
Brandon Rising
ee7b36cea5 Merge branch 'main' into onnx-testing 2023-07-18 22:56:41 -04:00
Brandon Rising
487455ef2e Add model_type to the model state object 2023-07-18 22:40:27 -04:00
Lincoln Stein
0a2964d8c0 add differentiated sdxl and sdxl_refiner model loaders 2023-07-16 12:17:56 -04:00
Brandon Rising
524888bf3b Merge branch 'main' into feat/onnx 2023-07-13 14:23:57 -04:00
Lincoln Stein
75c5ce46bc merged SDXLModelLoader into ModelLoader invocation 2023-07-11 16:33:08 -04:00
Lincoln Stein
8e42502dfd partial implementation of SDXL model loader 2023-07-10 20:18:30 -04:00
Sergey Borisov
a9e77675a8 Move clip skip to separate node 2023-07-06 17:39:49 +03:00
psychedelicious
08d428a5e7 feat(nodes): add lora field, update lora loader 2023-07-05 12:47:34 +10:00
blessedcoolant
7e18814dd0 Add standard names for Model Loader Nodes 2023-07-04 14:35:06 +10:00
Lincoln Stein
a8a2209560 VAE loader is loading proper VAE. Unclear if it is changing the image 2023-07-04 14:35:06 +10:00
Lincoln Stein
fa8a5838d3 add vae lodaer 2023-07-04 14:35:06 +10:00
blessedcoolant
6c62f41f2e chore: Change PipelineModels to MainModels 2023-07-04 14:33:56 +10:00
Sergey Borisov
5cebf67ee4 Apply lora by patching lora instead of hooks 2023-06-26 03:57:33 +03:00
Lincoln Stein
ba1371a88f rename ModelType.Pipeline to ModelType.Main 2023-06-24 11:45:49 -04:00
blessedcoolant
bb85608890 Merge branch 'main' into feat/onnx 2023-06-23 05:18:41 +12:00
psychedelicious
1bc170727b tidy(nodes): rename sd_model_loader to pipeline_model_loader
this is more accurate bc it can do eg kandinsky also
2023-06-22 17:47:58 +10:00