Commit Graph

433 Commits

Author SHA1 Message Date
Lincoln Stein
38c1436f02 resolve conflicts; blackify 2023-11-13 18:12:45 -05:00
Lincoln Stein
efbdb75568 implement psychedelicious recommendations as of 13 November 2023-11-13 17:05:01 -05:00
psychedelicious
4465f97cdf
Merge branch 'main' into refactor/model-manager-2 2023-11-14 07:51:57 +11:00
Lincoln Stein
67751a01ab remove unused import 2023-11-10 19:25:05 -05:00
psychedelicious
6494e8e551 chore: ruff format 2023-11-11 10:55:40 +11:00
psychedelicious
99a8ebe3a0 chore: ruff check - fix flake8-bugbear 2023-11-11 10:55:28 +11:00
psychedelicious
3a136420d5 chore: ruff check - fix flake8-comprensions 2023-11-11 10:55:23 +11:00
Lincoln Stein
bd56e9bc81 remove cruft code from router 2023-11-10 18:49:25 -05:00
Lincoln Stein
0544917161 multiple small fixes suggested in reviews from psychedelicious and ryan 2023-11-10 18:25:37 -05:00
Lincoln Stein
3b363d0258 fix flake8 lint check failures 2023-11-08 16:52:46 -05:00
Lincoln Stein
36e0faea6b blackify 2023-11-08 16:47:03 -05:00
Lincoln Stein
eebc0e7315 Merge branch 'refactor/model-manager-2' of github.com:invoke-ai/InvokeAI into refactor/model-manager-2 2023-11-08 16:45:29 -05:00
Lincoln Stein
6b173cc66f multiple small stylistic changes requested by reviewers 2023-11-08 16:45:26 -05:00
Lincoln Stein
b4732a7308
Update invokeai/app/services/model_records/model_records_base.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-11-08 13:50:40 -05:00
Lincoln Stein
344a56327a
Update invokeai/app/services/model_records/model_records_base.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2023-11-08 13:50:01 -05:00
Lincoln Stein
ce22c0fbaa sync pydantic and sql field names; merge routes 2023-11-06 18:08:57 -05:00
Lincoln Stein
2d051559d1 fix flake8 complaints 2023-11-05 21:45:08 -05:00
Lincoln Stein
db9cef0092 re-run isort 2023-11-04 23:50:07 -04:00
Lincoln Stein
72c34aea75 added add_model_record and get_model_record to router api 2023-11-04 23:42:44 -04:00
Lincoln Stein
edeea5237b add sql-based model config store and api 2023-11-04 23:03:26 -04:00
Ryan Dick
6e7a3f0546 (minor) Fix static checks and typo. 2023-11-02 19:20:37 -07:00
Ryan Dick
4a683cc669 Add a app config parameter to control the ModelCache logging behavior. 2023-11-02 19:20:37 -07:00
psychedelicious
03a64275c6 fix(db): fix deprecated pydantic .json() method 2023-10-31 04:34:51 +11:00
psychedelicious
859e3d5a61 chore: flake8 2023-10-30 01:49:10 +11:00
Lincoln Stein
3546c41f4a close #4975 2023-10-23 18:48:14 -04:00
psychedelicious
8604943e89 feat(nodes): simple custom nodes
Custom nodes may be places in `$INVOKEAI_ROOT/nodes/` (configurable with `custom_nodes_dir` option).

On app startup, an `__init__.py` is copied into the custom nodes dir, which recursively loads all python files in the directory as modules (files starting with `_` are ignored). The custom nodes dir is now a python module itself.

When we `from invocations import *` to load init all invocations, we load the custom nodes dir, registering all custom nodes.
2023-10-20 14:28:16 +11:00
psychedelicious
dcd11327c1 fix(db): remove unused, commented out methods 2023-10-20 12:05:13 +11:00
psychedelicious
2f4f83280b fix(db): remove extraneous conflict handling in workflow image records 2023-10-20 12:05:13 +11:00
psychedelicious
b5940039f3 chore: lint 2023-10-20 12:05:13 +11:00
psychedelicious
2faed653d7 fix(api): deduplicate metadata/workflow extraction logic 2023-10-20 12:05:13 +11:00
psychedelicious
0cda7943fa feat(api): add workflow_images junction table
similar to boards, images and workflows may be associated via junction table
2023-10-20 12:05:13 +11:00
psychedelicious
86c3acf184 fix(nodes): revert optional graph 2023-10-20 12:05:13 +11:00
psychedelicious
bbae4045c9 fix(nodes): GraphInvocation should use InputField 2023-10-20 12:05:13 +11:00
psychedelicious
4012388f0a feat: use ModelValidator naming convention for pydantic type adapters
This is the naming convention in the docs and is also clear.
2023-10-20 12:05:13 +11:00
psychedelicious
3c4f43314c feat: move workflow/metadata models to baseinvocation.py
needed to prevent circular imports
2023-10-20 12:05:13 +11:00
psychedelicious
5a163f02a6 fix(nodes): fix metadata/workflow serialization 2023-10-20 12:05:13 +11:00
psychedelicious
f0db4d36e4 feat: metadata refactor
- Refactor how metadata is handled to support a user-defined metadata in graphs
- Update workflow embed handling
- Update UI to work with these changes
- Update tests to support metadata/workflow changes
2023-10-20 12:05:13 +11:00
psychedelicious
c2da74c587 feat: add workflows table & service 2023-10-20 12:05:13 +11:00
psychedelicious
9195c8c957 feat: dedicated route to get intermediates count
This fixes a weird issue where the list images method needed to handle `None` for its `limit` and `offset` arguments, in order to get a count of all intermediates.
2023-10-19 16:58:51 +11:00
psychedelicious
284a257c25
feat: remove enqueue_graph routes/methods (#4922)
This is totally extraneous - it's almost identical to `enqueue_batch`.
2023-10-17 18:00:40 +00:00
psychedelicious
c238a7f18b feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-17 14:59:25 +11:00
psychedelicious
388d36b839 fix(db): use RLock instead of Lock
Fixes issues where a db-accessing service wants to call db-accessing methods with locks.
2023-10-16 11:45:24 +11:00
Lincoln Stein
29c3f49182 enable the ram cache slider in invokeai-configure 2023-10-12 23:04:16 -04:00
psychedelicious
d2fb29cf0d fix(app): remove errant logger line 2023-10-12 12:15:06 -04:00
psychedelicious
d1fce4b70b chore: rebase conflicts 2023-10-12 12:15:06 -04:00
psychedelicious
3611029057 fix(backend): remove logic to create workflows column
Snuck in there while I was organising
2023-10-12 12:15:06 -04:00
psychedelicious
402cf9b0ee feat: refactor services folder/module structure
Refactor services folder/module structure.

**Motivation**

While working on our services I've repeatedly encountered circular imports and a general lack of clarity regarding where to put things. The structure introduced goes a long way towards resolving those issues, setting us up for a clean structure going forward.

**Services**

Services are now in their own folder with a few files:

- `services/{service_name}/__init__.py`: init as needed, mostly empty now
- `services/{service_name}/{service_name}_base.py`: the base class for the service
- `services/{service_name}/{service_name}_{impl_type}.py`: the default concrete implementation of the service - typically one of `sqlite`, `default`, or `memory`
- `services/{service_name}/{service_name}_common.py`: any common items - models, exceptions, utilities, etc

Though it's a bit verbose to have the service name both as the folder name and the prefix for files, I found it is _extremely_ confusing to have all of the base classes just be named `base.py`. So, at the cost of some verbosity when importing things, I've included the service name in the filename.

There are some minor logic changes. For example, in `InvocationProcessor`, instead of assigning the model manager service to a variable to be used later in the file, the service is used directly via the `Invoker`.

**Shared**

Things that are used across disparate services are in `services/shared/`:

- `default_graphs.py`: previously in `services/`
- `graphs.py`: previously in `services/`
- `paginatation`: generic pagination models used in a few services
- `sqlite`: the `SqliteDatabase` class, other sqlite-specific things
2023-10-12 12:15:06 -04:00
psychedelicious
88bee96ca3 feat(backend): rename db.py to sqlite.py 2023-10-12 12:15:06 -04:00
psychedelicious
5048fc7c9e feat(backend): move pagination models to own file 2023-10-12 12:15:06 -04:00
psychedelicious
2a35d93a4d feat(backend): organise service dependencies
**Service Dependencies**

Services that depend on other services now access those services via the `Invoker` object. This object is provided to the service as a kwarg to its `start()` method.

Until now, most services did not utilize this feature, and several services required their dependencies to be initialized and passed in on init.

Additionally, _all_ services are now registered as invocation services - including the low-level services. This obviates issues with inter-dependent services we would otherwise experience as we add workflow storage.

**Database Access**

Previously, we were passing in a separate sqlite connection and corresponding lock as args to services in their init. A good amount of posturing was done in each service that uses the db.

These objects, along with the sqlite startup and cleanup logic, is now abstracted into a simple `SqliteDatabase` class. This creates the shared connection and lock objects, enables foreign keys, and provides a `clean()` method to do startup db maintenance.

This is not a service as it's only used by sqlite services.
2023-10-12 12:15:06 -04:00