Commit Graph

111 Commits

Author SHA1 Message Date
Lincoln Stein
6ad1948a44 add InvokeAIAppConfig schema migration system 2024-04-18 21:33:54 -04:00
Lincoln Stein
e93f4d632d
[util] Add generic torch device class (#6174)
* introduce new abstraction layer for GPU devices

* add unit test for device abstraction

* fix ruff

* convert TorchDeviceSelect into a stateless class

* move logic to select context-specific execution device into context API

* add mock hardware environments to pytest

* remove dangling mocker fixture

* fix unit test for running on non-CUDA systems

* remove unimplemented get_execution_device() call

* remove autocast precision

* Multiple changes:

1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to
   context.models.get_execution_device().
2. Rename TorchDeviceSelect to TorchDevice
3. Added back the legacy public API defined in `invocation_api`, including
   choose_precision().
4. Added a config file migration script to accommodate removal of precision=autocast.

* add deprecation warnings to choose_torch_device() and choose_precision()

* fix test crash

* remove app_config argument from choose_torch_device() and choose_torch_dtype()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-04-15 13:12:49 +00:00
psychedelicious
8c15d14099 fix: use locale encoding
We have had a few bugs with v4 related to file encodings, especially on Windows.

Windows uses its own character encodings instead of `utf-8`, often `cp1252`. Some characters cannot be decoded using `utf-8`, causing `UnicodeDecodeError`.

There are a couple places where this can cause problems:
- In the installer bootstrap, we install or upgrade `pip` and decode the result, using `subprocess`.

  The input to this includes the user's home dir. In #6105, the user had one of the problematic characters in their username. `subprocess` attempts and fails to decode the username, which crashes the installer.

  To fix this, we need to use `locale.getpreferredencoding()` when executing the command.
- Similarly, in the model install service and config class, we attempt to load a yaml config file. If a problematic character is in the path to the file (which often includes the user's home dir), we can get the same error.

  One example is  #6129 in which the models.yaml migration fails.

  To fix this, we need to open the file with `locale.getpreferredencoding()`.
2024-04-04 15:30:47 +11:00
psychedelicious
9c51abb46e fix(config): get root from venv
This logic was a bit wonky. It only selected the `venv` parent if there was already an `invokeai.yaml` file in it. Removed this constraint.
2024-04-04 10:54:23 +11:00
psychedelicious
e655399324 fix(config): handle windows paths in invokeai.yaml migration for legacy_conf_dir
The logic incorrectly set the `legacy_conf_dir` on windows, where the slashes go the other direction. Handle this case and update tests to catch it.
2024-04-02 08:06:59 -04:00
psychedelicious
c545262e3b revert: unrelated docstring change 2024-03-28 12:35:41 +11:00
psychedelicious
73c326680a feat(mm): remove autoimport; revise startup model scanning
These two changes are interrelated.

## Autoimport

The autoimport feature can be easily replicated using the scan folder tab in the model manager. Removing the implicit autoimport reduces surface area and unifies all model installation into the UI.

This functionality is removed, and the `autoimport_dir` config setting is removed.

## Startup model dir scanning

We scanned the invoke-managed models dir on startup and took certain actions:

- Register orphaned model files
- Remove model records from the db when the model path doesn't exist

### Orphaned model files

We should never have orphaned model files during normal use - we manage the models directory, and we only delete files when the user requests it.

During testing or development, when a fresh DB or memory DB is used, we could end up with orphaned models that should be registered.

Instead of always scanning for orphaned models and registering them, we now only do the scan if the new `scan_models_on_startup` config flag is set.

The description for this setting indicates it is intended for use for testing only.

### Remove records for missing model files

This functionality could unexpectedly wipe models from the db.

For example, if your models dir was on external media, and that media was inaccessible during startup, the scan would see all your models as missing and delete them from the db.

The "proactive" scan is removed. Instead, we will scan for missing models and log a warning if we find a model whose path doesn't exist. No possibility for data loss.
2024-03-28 12:35:41 +11:00
psychedelicious
f538ed54fb fix(config): do not write env vars to config files
Add class `DefaultInvokeAIAppConfig`, which inherits from `InvokeAIAppConfig`. When instantiated, this class does not parse environment variables, so it outputs a "clean" default config. That's the only difference.

Then, we can use this new class in the 3 places:
- When creating the example config file (no env vars should be here)
- When migrating a v3 config (we want to instantiate the migrated config without env vars, so that when we write it out, they are not written to disk)
- When creating a fresh config file (i.e. on first run with an uninitialized root or new config file path - no env vars here!)
2024-03-22 09:53:02 +11:00
psychedelicious
72b44f7ebc feat(mm): rename "blake3" to "blake3_multi"
Just make it clearer which is which.
2024-03-22 08:26:36 +11:00
psychedelicious
7726d312e1 feat(mm): default hashing algo to blake3_single
For SSDs, `blake3` is about 10x faster than `blake3_single` - 3 files/second vs 30 files/second.

For spinning HDDs, `blake3` is about 100x slower than `blake3_single` - 300 seconds/file vs 3 seconds/file.

For external drives, `blake3` is always worse, but the difference is highly variable. For external spinning drives, it's probably way worse than internal.

The least offensive algorithm is `blake3_single`, and it's still _much_ faster than any other algorithm.
2024-03-22 08:26:36 +11:00
psychedelicious
eb607498bf fix(config): create parent dir when writing config file 2024-03-20 15:05:25 +11:00
psychedelicious
9a5575b46b feat(mm): move HF token helper to route 2024-03-20 15:05:25 +11:00
psychedelicious
02329df1df feat(config): write example config file out on app startup 2024-03-20 15:05:25 +11:00
psychedelicious
f5337c7ce2 fix(config): handle relative paths to v3 models.yamls 2024-03-20 15:05:25 +11:00
psychedelicious
b02f2da71d fix(config): handle legacy_conf_dir setting migration 2024-03-20 15:05:25 +11:00
psychedelicious
96ef7e3889 docs: add link to docs to invokeai.yaml template 2024-03-20 15:05:25 +11:00
psychedelicious
6c558279dd feat(config): add CLI arg to specify config file
This allows users to create simple "profiles" via separate `invokeai.yaml` files.

- Remove `InvokeAIAppConfig.set_root()`, it's extraneous
- Remove `InvokeAIAppConfig.merge_from_file()`, it's extraneous
- Add `--config` to the app arg parser, add `InvokeAIAppConfig._config_file`, and consume in the config singleton getter
- `InvokeAIAppConfig.init_file_path` -> `InvokeAIAppConfig.config_file_path`
2024-03-20 15:05:25 +11:00
psychedelicious
ee3096f616 feat(config): add flag to indicate if args were parsed
This flag acts as a proxy for the `get_config()` function to determine if the full application is running.

If it was, the config will set the root, do HF login, etc.

If not (e.g. it's called by an external script), all that stuff will be skipped.
2024-03-20 15:05:25 +11:00
psychedelicious
6af6673a4f feat: move all config-related initialization to app
HF login, legacy yaml confs, and default init file are all handled during app setup.

All directories are created as they are needed by the app.

No need to check for a valid root dir - we will make it if it doesn't exist.
2024-03-20 15:05:25 +11:00
psychedelicious
b173e4c08d tidy(config): type checker ignores + comment 2024-03-20 15:05:25 +11:00
psychedelicious
059f869737 tidy(config): remove ignore_missing_core_models CLI arg and setting
This is now a no-op, with all models being downloaded when they are first requested.
2024-03-20 15:05:25 +11:00
psychedelicious
5c1aa02e7b fix(config): set default legacy_conf_dir to configs
It was `configs/stable-diffusion` before, which broke conversions.
2024-03-20 15:05:25 +11:00
psychedelicious
6e882d3fd6 feat(config): dynamic ram cache size
Use the util function to calculate ram cache size on startup. This way, the `ram` setting will always be optimized for a system, even if they add or remove RAM. In other words, the default value is now dynamic.
2024-03-20 15:05:25 +11:00
psychedelicious
9fa9ebe386 fix(config): set ignore_missing_core_models when provided as CLI arg 2024-03-19 09:24:28 +11:00
psychedelicious
e76cc71e81 fix(config): edge cases in models.yaml migration
When running the configurator, the `legacy_models_conf_path` was stripped when saving the config file. Then the migration logic didn't fire correctly, and the custom models.yaml paths weren't migrated into the db.

- Rework the logic to migrate this path by adding it to the config object as a normal field that is not excluded from serialization.
- Rearrange the models.yaml migration logic to remove the legacy path after migrating, then write the config file. This way, the legacy path doesn't stick around.
- Move the schema version into the config object.
- Back up the config file before attempting migration.
- Add tests to cover this edge case
2024-03-19 09:24:28 +11:00
psychedelicious
4633242503 tidy(config): move config docstring builder to its script 2024-03-19 09:24:28 +11:00
psychedelicious
e8b030427d fix(config): do not discard conf_path, migrate custom models.yaml
Hold onto `conf_path` temporarily while migrating `invokeai.yaml` so that it gets migrated correctly as the model installer starts up. Stashed as `legacy_models_yaml_path` in the config, excluded from serialization.
2024-03-19 09:24:28 +11:00
psychedelicious
415a4baf78 docs: add note about pydantic-settings' yaml support 2024-03-19 09:24:28 +11:00
psychedelicious
e32c609fec fix(config): ignore empty environment variables (use default values instead) 2024-03-19 09:24:28 +11:00
psychedelicious
a281671e6c docs: update InvokeAIAppConfig doc generator
It now renders the valid values.
2024-03-19 09:24:28 +11:00
psychedelicious
ce9aeeece3 feat: single app entrypoint with CLI arg parsing
We have two problems with how argparse is being utilized:
- We parse CLI args as the `api_app.py` file is read. This causes a problem pytest, which has an incompatible set of CLI args. Some tests import the FastAPI app, which triggers the config to parse CLI args, which receives the pytest args and fails.
- We've repeatedly had problems when something that uses the config is imported before the CLI args are parsed. When this happens, the root dir may not be set correctly, so we attempt to operate on incorrect paths.

To resolve these issues, we need to lift CLI arg parsing outside of the application code, but still let the application access the CLI args. We can create a external app entrypoint to do this.

- `InvokeAIArgs` is a simple helper class that parses CLI args and stores the result.
- `run_app()` is the new entrypoint. It first parses CLI args, then runs `invoke_api` to start the app.

The `invokeai-web` project script and `invokeai-web.py` dev script now call `run_app()` instead of `invoke_api()`.

The first time `get_config()` is called to get the singleton config object, it retrieves the args from `InvokeAIArgs`, sets the root dir if provided, then merges settings in from `invokeai.yaml`.

CLI arg parsing is now safely insulated from application code, but still accessible. And we don't need to worry about import order having an impact on anything, because by the time the app is running, we have already parsed CLI args. Whew!
2024-03-19 09:24:28 +11:00
psychedelicious
d09f03ef25 fix(config): if no invokeai.yaml is found, create a default one
This fixes an issue with `test_images.py`, which tests the bulk images routers and imports the whole FastAPI app. This triggers the config logic which fails on the test runner, because it has no `invokeai.yaml`.

Also probably just good for graceful fallback.
2024-03-19 09:24:28 +11:00
psychedelicious
3f8e2bfd18 fix(config): migrate deprecated max_cache_size and max_vram_cache_size settings 2024-03-19 09:24:28 +11:00
psychedelicious
f69938c6a8 fix(config): revised config methods
- `write_file` requires an destination file path
- `read_config` -> `merge_from_file`, if no path is provided, reads from `self.init_file_path`
- update app, tests to use new methods
- fix configurator, was overwriting config file data unexpectedly
2024-03-19 09:24:28 +11:00
psychedelicious
5e39e46954 feat(config): more resiliant update_config method
Only set values that have changed.
2024-03-19 09:24:28 +11:00
psychedelicious
1079bf3ccf feat(config): fix bad compress_level setting
Tweak the name of it so that incoming configs with the old default value of 6 have the setting stripped out. The result is all configs will now have the new, much better default value of 1.
2024-03-19 09:24:28 +11:00
psychedelicious
53c8f36029 docs(config): clarify comment during config migration 2024-03-19 09:24:28 +11:00
psychedelicious
b9884a6166 feat(config): split out parse_args and read_config logic from get_config
Having this all in the `get_config` function makes testing hard. Move these two functions to their own methods, and call them on app startup explicitly.
2024-03-19 09:24:28 +11:00
psychedelicious
3fb116155b refactor(config): simplified config
- Remove OmegaConf. It functioned as an intermediary data format, between YAML/argparse and pydantic. It's not necessary - we can parse YAML or CLI args directly with pydantic.

- Remove dynamic CLI args. Only `root` is explicitly supported. This greatly simplifies config handling. Configuration is done by editing the YAML file. Frequently-used args can be added if there is a demand.

- A separate arg parser is created to handle the slimmed-down CLI args. It's run immediately in the `invokeai-web` script to handle `--version` and `--help`. It is also used inside the singleton config getter (see below).

- Remove categories from the config. Our settings model is mostly flat. Handling categories adds complexity for both us and users - we have to handle transforming a flat config to categorized config (and vice-versa), while users have to be careful with indentation in their YAML file.

- Add a `meta` key to the config file. Currently, this holds the config schema version only. It is not a part of the config object itself.

- Remove legacy settings that are no longer referenced, or were effectively no-op settings when referenced in code.

- Implement simple migration logic to for v3 configs. If migration is successful, the v3 config file is backed up to `invokeai.yaml.bak` and the new config written to `invokeai.yaml`.

- Previously, the singleton config was accessed by calling `InvokeAIAppConfig.get_config()`. This returned an instance of `InvokeAIAppConfig`, which _also_ has the `get_config` function. This created to a confusing situation where you weren't sure if you needed to call `get_config` or just use the config object. This method is replaced by a standalone `get_config` function which returns a singleton config object.

- Wrap CLI arg parsing (for `root`) and loading/migrating `invokeai.yaml` into the new `get_config()` function.

- Move `generate_config_docstrings` into standalone utility function.

- Make `root` a private attr (`_root`). This reduces the temptation to directly modify and or use this sensitive field and ensures it is neither serialized nor read from input data. Use `root_path` to access the resolved root path, or `set_root` to set the root to something.
2024-03-19 09:24:28 +11:00
psychedelicious
21617f3bc1 docs: update description for hashing_algorithm in config 2024-03-14 15:54:42 +11:00
psychedelicious
a4be935458 docs: update config docs 2024-03-14 15:54:42 +11:00
psychedelicious
eb6e6548ed feat(mm): faster hashing for spinning disk HDDs
BLAKE3 has poor performance on spinning disks when parallelized. See https://github.com/BLAKE3-team/BLAKE3/issues/31

- Replace `skip_model_hash` setting with `hashing_algorithm`. Any algorithm we support is accepted.
- Add `random` algorithm: hashes a UUID with BLAKE3 to create a random "hash". Equivalent to the previous skip functionality.
- Add `blake3_single` algorithm: hashes on a single thread using BLAKE3, fixes the aforementioned performance issue
- Update model probe to accept the algorithm to hash with as an optional arg, defaulting to `blake3`
- Update all calls of the probe to use the app's configured hashing algorithm
- Update an external script that probes models
- Update tests
- Move ModelHash into its own module to avoid circuclar import issues
2024-03-14 15:54:42 +11:00
Brandon Rising
c454ccc65c Run ruff 2024-03-11 15:53:00 -04:00
Brandon Rising
46fd3465ce Skip list logic if the list only contains primitives 2024-03-11 15:53:00 -04:00
Brandon Rising
97afa6e2a6 Allow lists of basemodel objects in omegaconf 2024-03-11 15:53:00 -04:00
psychedelicious
5b51ebf1c4 docs: regenerate config docstrings 2024-03-10 10:38:52 +11:00
psychedelicious
59228643a9 docs: skip_model_hash -> model install category, use_memory_db -> development category 2024-03-10 10:38:52 +11:00
psychedelicious
b24657df11 docs: roll back adding examples to config docstrings
This isn't a valid docstring syntax and breaks the autogeneration
2024-03-10 10:38:52 +11:00
Brandon Rising
0bd9a0a9ea Add ability to provide config examples in docs 2024-03-08 16:31:39 -05:00
Brandon Rising
4ae2cd242e Update to include remote_api_tokens in the config docs 2024-03-08 16:31:39 -05:00