Commit Graph

35 Commits

Author SHA1 Message Date
Lincoln Stein
8695ad6f59 all features implemented, docs updated, ready for review 2023-11-26 13:18:21 -05:00
Lincoln Stein
8aefe2cefe import_model and list_install_jobs router APIs written 2023-11-25 21:45:59 -05:00
Lincoln Stein
edeea5237b add sql-based model config store and api 2023-11-04 23:03:26 -04:00
psychedelicious
b5940039f3 chore: lint 2023-10-20 12:05:13 +11:00
psychedelicious
0cda7943fa feat(api): add workflow_images junction table
similar to boards, images and workflows may be associated via junction table
2023-10-20 12:05:13 +11:00
psychedelicious
c2da74c587 feat: add workflows table & service 2023-10-20 12:05:13 +11:00
psychedelicious
402cf9b0ee feat: refactor services folder/module structure
Refactor services folder/module structure.

**Motivation**

While working on our services I've repeatedly encountered circular imports and a general lack of clarity regarding where to put things. The structure introduced goes a long way towards resolving those issues, setting us up for a clean structure going forward.

**Services**

Services are now in their own folder with a few files:

- `services/{service_name}/__init__.py`: init as needed, mostly empty now
- `services/{service_name}/{service_name}_base.py`: the base class for the service
- `services/{service_name}/{service_name}_{impl_type}.py`: the default concrete implementation of the service - typically one of `sqlite`, `default`, or `memory`
- `services/{service_name}/{service_name}_common.py`: any common items - models, exceptions, utilities, etc

Though it's a bit verbose to have the service name both as the folder name and the prefix for files, I found it is _extremely_ confusing to have all of the base classes just be named `base.py`. So, at the cost of some verbosity when importing things, I've included the service name in the filename.

There are some minor logic changes. For example, in `InvocationProcessor`, instead of assigning the model manager service to a variable to be used later in the file, the service is used directly via the `Invoker`.

**Shared**

Things that are used across disparate services are in `services/shared/`:

- `default_graphs.py`: previously in `services/`
- `graphs.py`: previously in `services/`
- `paginatation`: generic pagination models used in a few services
- `sqlite`: the `SqliteDatabase` class, other sqlite-specific things
2023-10-12 12:15:06 -04:00
psychedelicious
2a35d93a4d feat(backend): organise service dependencies
**Service Dependencies**

Services that depend on other services now access those services via the `Invoker` object. This object is provided to the service as a kwarg to its `start()` method.

Until now, most services did not utilize this feature, and several services required their dependencies to be initialized and passed in on init.

Additionally, _all_ services are now registered as invocation services - including the low-level services. This obviates issues with inter-dependent services we would otherwise experience as we add workflow storage.

**Database Access**

Previously, we were passing in a separate sqlite connection and corresponding lock as args to services in their init. A good amount of posturing was done in each service that uses the db.

These objects, along with the sqlite startup and cleanup logic, is now abstracted into a simple `SqliteDatabase` class. This creates the shared connection and lock objects, enables foreign keys, and provides a `clean()` method to do startup db maintenance.

This is not a service as it's only used by sqlite services.
2023-10-12 12:15:06 -04:00
psychedelicious
b7938d9ca9
feat: queued generation (#4502)
* fix(config): fix typing issues in `config/`

`config/invokeai_config.py`:
- use `Optional` for things that are optional
- fix typing of `ram_cache_size()` and `vram_cache_size()`
- remove unused and incorrectly typed method `autoconvert_path`
- fix types and logic for `parse_args()`, in which `InvokeAIAppConfig.initconf` *must* be a `DictConfig`, but function would allow it to be set as a `ListConfig`, which presumably would cause issues elsewhere

`config/base.py`:
- use `cls` for first arg of class methods
- use `Optional` for things that are optional
- fix minor type issue related to setting of `env_prefix`
- remove unused `add_subparser()` method, which calls `add_parser()` on an `ArgumentParser` (method only available on the `_SubParsersAction` object, which is returned from ArgumentParser.add_subparsers()`)

* feat: queued generation and batches

Due to a very messy branch with broad addition of `isort` on `main` alongside it, some git surgery was needed to get an agreeable git history. This commit represents all of the work on queued generation. See PR for notes.

* chore: flake8, isort, black

* fix(nodes): fix incorrect service stop() method

* fix(nodes): improve names of a few variables

* fix(tests): fix up tests after changes to batches/queue

* feat(tests): add unit tests for session queue helper functions

* feat(ui): dynamic prompts is always enabled

* feat(queue): add queue_status_changed event

* feat(ui): wip queue graphs

* feat(nodes): move cleanup til after invoker startup

* feat(nodes): add cancel_by_batch_ids

* feat(ui): wip batch graphs & UI

* fix(nodes): remove `Batch.batch_id` from required

* fix(ui): cleanup and use fixedCacheKey for all mutations

* fix(ui): remove orphaned nodes from canvas graphs

* fix(nodes): fix cancel_by_batch_ids result count

* fix(ui): only show cancel batch tooltip when batches were canceled

* chore: isort

* fix(api): return `[""]` when dynamic prompts generates no prompts

Just a simple fallback so we always have a prompt.

* feat(ui): dynamicPrompts.combinatorial is always on

There seems to be little purpose in using the combinatorial generation for dynamic prompts. I've disabled it by hiding it from the UI and defaulting combinatorial to true. If we want to enable it again in the future it's straightforward to do so.

* feat: add queue_id & support logic

* feat(ui): fix upscale button

It prepends the upscale operation to queue

* feat(nodes): return queue item when enqueuing a single graph

This facilitates one-off graph async workflows in the client.

* feat(ui): move controlnet autoprocess to queue

* fix(ui): fix non-serializable DOMRect in redux state

* feat(ui): QueueTable performance tweaks

* feat(ui): update queue list

Queue items expand to show the full queue item. Just as JSON for now.

* wip threaded session_processor

* feat(nodes,ui): fully migrate queue to session_processor

* feat(nodes,ui): add processor events

* feat(ui): ui tweaks

* feat(nodes,ui): consolidate events, reduce network requests

* feat(ui): cleanup & abstract queue hooks

* feat(nodes): optimize batch permutation

Use a generator to do only as much work as is needed.

Previously, though we only ended up creating exactly as many queue items as was needed, there was still some intermediary work that calculated *all* permutations. When that number was very high, the system had a very hard time and used a lot of memory.

The logic has been refactored to use a generator. Additionally, the batch validators are optimized to return early and use less memory.

* feat(ui): add seed behaviour parameter

This dynamic prompts parameter allows the seed to be randomized per prompt or per iteration:
- Per iteration: Use the same seed for all prompts in a single dynamic prompt expansion
- Per prompt: Use a different seed for every single prompt

"Per iteration" is appropriate for exploring a the latents space with a stable starting noise, while "Per prompt" provides more variation.

* fix(ui): remove extraneous random seed nodes from linear graphs

* fix(ui): fix controlnet autoprocess not working when queue is running

* feat(queue): add timestamps to queue status updates

Also show execution time in queue list

* feat(queue): change all execution-related events to use the `queue_id` as the room, also include `queue_item_id` in InvocationQueueItem

This allows for much simpler handling of queue items.

* feat(api): deprecate sessions router

* chore(backend): tidy logging in `dependencies.py`

* fix(backend): respect `use_memory_db`

* feat(backend): add `config.log_sql` (enables sql trace logging)

* feat: add invocation cache

Supersedes #4574

The invocation cache provides simple node memoization functionality. Nodes that use the cache are memoized and not re-executed if their inputs haven't changed. Instead, the stored output is returned.

## Results

This feature provides anywhere some significant to massive performance improvement.

The improvement is most marked on large batches of generations where you only change a couple things (e.g. different seed or prompt for each iteration) and low-VRAM systems, where skipping an extraneous model load is a big deal.

## Overview

A new `invocation_cache` service is added to handle the caching. There's not much to it.

All nodes now inherit a boolean `use_cache` field from `BaseInvocation`. This is a node field and not a class attribute, because specific instances of nodes may want to opt in or out of caching.

The recently-added `invoke_internal()` method on `BaseInvocation` is used as an entrypoint for the cache logic.

To create a cache key, the invocation is first serialized using pydantic's provided `json()` method, skipping the unique `id` field. Then python's very fast builtin `hash()` is used to create an integer key. All implementations of `InvocationCacheBase` must provide a class method `create_key()` which accepts an invocation and outputs a string or integer key.

## In-Memory Implementation

An in-memory implementation is provided. In this implementation, the node outputs are stored in memory as python classes. The in-memory cache does not persist application restarts.

Max node cache size is added as `node_cache_size` under the `Generation` config category.

It defaults to 512 - this number is up for discussion, but given that these are relatively lightweight pydantic models, I think it's safe to up this even higher.

Note that the cache isn't storing the big stuff - tensors and images are store on disk, and outputs include only references to them.

## Node Definition

The default for all nodes is to use the cache. The `@invocation` decorator now accepts an optional `use_cache: bool` argument to override the default of `True`.

Non-deterministic nodes, however, should set this to `False`. Currently, all random-stuff nodes, including `dynamic_prompt`, are set to `False`.

The field name `use_cache` is now effectively a reserved field name and possibly a breaking change if any community nodes use this as a field name. In hindsight, all our reserved field names should have been prefixed with underscores or something.

## One Gotcha

Leaf nodes probably want to opt out of the cache, because if they are not cached, their outputs are not saved again.

If you run the same graph multiple times, you only end up with a single image output, because the image storage side-effects are in the `invoke()` method, which is bypassed if we have a cache hit.

## Linear UI

The linear graphs _almost_ just work, but due to the gotcha, we need to be careful about the final image-outputting node. To resolve this, a `SaveImageInvocation` node is added and used in the linear graphs.

This node is similar to `ImagePrimitive`, except it saves a copy of its input image, and has `use_cache` set to `False` by default.

This is now the leaf node in all linear graphs, and is the only node in those graphs with `use_cache == False` _and_ the only node with `is_intermedate == False`.

## Workflow Editor

All nodes now have a footer with a new `Use Cache [ ]` checkbox. It defaults to the value set by the invocation in its python definition, but can be changed by the user.

The workflow/node validation logic has been updated to migrate old workflows to use the new default values for `use_cache`. Users may still want to review the settings that have been chosen. In the event of catastrophic failure when running this migration, the default value of `True` is applied, as this is correct for most nodes.

Users should consider saving their workflows after loading them in and having them updated.

## Future Enhancements - Callback

A future enhancement would be to provide a callback to the `use_cache` flag that would be run as the node is executed to determine, based on its own internal state, if the cache should be used or not.

This would be useful for `DynamicPromptInvocation`, where the deterministic behaviour is determined by the `combinatorial: bool` field.

## Future Enhancements - Persisted Cache

Similar to how the latents storage is backed by disk, the invocation cache could be persisted to the database or disk. We'd need to be very careful about deserializing outputs, but it's perhaps worth exploring in the future.

* fix(ui): fix queue list item width

* feat(nodes): do not send the whole node on every generator progress

* feat(ui): strip out old logic related to sessions

Things like `isProcessing` are no longer relevant with queue. Removed them all & updated everything be appropriate for queue. May be a few little quirks I've missed...

* feat(ui): fix up param collapse labels

* feat(ui): click queue count to go to queue tab

* tidy(queue): update comment, query format

* feat(ui): fix progress bar when canceling

* fix(ui): fix circular dependency

* feat(nodes): bail on node caching logic if `node_cache_size == 0`

* feat(nodes): handle KeyError on node cache pop

* feat(nodes): bypass cache codepath if caches is disabled

more better no do thing

* fix(ui): reset api cache on connect/disconnect

* feat(ui): prevent enqueue when no prompts generated

* feat(ui): add queue controls to workflow editor

* feat(ui): update floating buttons & other incidental UI tweaks

* fix(ui): fix missing/incorrect translation keys

* fix(tests): add config service to mock invocation services

invoking needs access to `node_cache_size` to occur

* optionally remove pause/resume buttons from queue UI

* option to disable prepending

* chore(ui): remove unused file

* feat(queue): remove `order_id` entirely, `item_id` is now an autoinc pk

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-09-20 15:09:24 +10:00
Martin Kristiansen
5615c31799 isort wip 2023-09-12 13:01:58 -04:00
Martin Kristiansen
537ae2f901 Resolving merge conflicts for flake8 2023-08-18 15:52:04 +10:00
Lincoln Stein
8fc75a71ee integrate correctly into app API and add features
- Create abstract base class InvocationStatsServiceBase
- Store InvocationStatsService in the InvocationServices object
- Collect and report stats on simultaneous graph execution
  independently for each graph id
- Track VRAM usage for each node
- Handle cancellations and other exceptions gracefully
2023-08-02 18:10:52 -04:00
psychedelicious
48a031dbaf fix(nodes): fix typing of configuration service 2023-07-16 10:52:18 +10:00
psychedelicious
c7b547ea3e feat(nodes): remove references to restoration services
- remove restoration services
- remove the restore faces nodes
- update tests
2023-07-16 01:12:39 +10:00
psychedelicious
c00aea7a6c tests(nodes): fix nodes tests 2023-06-29 23:11:48 +10:00
psychedelicious
72e9ced889 feat(nodes): add boards and board_images services 2023-06-22 16:25:49 +10:00
maryhipp
a1671519d5 board CRUD 2023-06-22 16:25:49 +10:00
psychedelicious
37cdd91f5d fix(nodes): use forward declarations for InvocationServices
Also use `TYPE_CHECKING` to get IDE hints.
2023-05-25 12:12:31 +10:00
psychedelicious
ff6b345d45 fix(nodes): rebase fixes 2023-05-24 11:30:47 -04:00
psychedelicious
d2c223de8f feat(nodes): move fully* to new images service
* except i haven't rebuilt inpaint in latents
2023-05-24 11:30:47 -04:00
psychedelicious
22c34c343a feat(nodes): fix types for InvocationServices 2023-05-24 11:30:47 -04:00
psychedelicious
f7804f6126 feat(nodes): add logger to images service 2023-05-24 11:30:47 -04:00
psychedelicious
d14b02e93f feat(logger): fix logger type issues 2023-05-24 11:30:47 -04:00
psychedelicious
1b75d899ae feat(nodes): wip image storage implementation 2023-05-24 11:30:47 -04:00
psychedelicious
9c89d3452c feat(nodes): add high-level images service
feat(nodes): add ResultsServiceABC & SqliteResultsService

**Doesn't actually work bc of circular imports. Can't even test it.**

- add a base class for ResultsService and SQLite implementation
- use `graph_execution_manager` `on_changed` callback to keep `results` table in sync

fix(nodes): fix results service bugs

chore(ui): regen api

fix(ui): fix type guards

feat(nodes): add `result_type` to results table, fix types

fix(nodes): do not shadow `list` builtin

feat(nodes): add results router

It doesn't work due to circular imports still

fix(nodes): Result class should use outputs classes, not fields

feat(ui): crude results router

fix(ui): send to canvas in currentimagebuttons not working

feat(nodes): add core metadata builder

feat(nodes): add design doc

feat(nodes): wip latents db stuff

feat(nodes): images_db_service and resources router

feat(nodes): wip images db & router

feat(nodes): update image related names

feat(nodes): update urlservice

feat(nodes): add high-level images service
2023-05-24 11:30:47 -04:00
Lincoln Stein
90054ddf0d use InvokeAISettings for app-wide configuration 2023-05-03 22:30:30 -04:00
Lincoln Stein
974841926d logger is a interchangeable service 2023-04-29 10:48:50 -04:00
psychedelicious
5f498e10bd
Partial migration of UI to nodes API (#3195)
* feat(ui): add axios client generator and simple example

* fix(ui): update client & nodes test code w/ new Edge type

* chore(ui): organize generated files

* chore(ui): update .eslintignore, .prettierignore

* chore(ui): update openapi.json

* feat(backend): fixes for nodes/generator

* feat(ui): generate object args for api client

* feat(ui): more nodes api prototyping

* feat(ui): nodes cancel

* chore(ui): regenerate api client

* fix(ui): disable OG web server socket connection

* fix(ui): fix scrollbar styles typing and prop

just noticed the typo, and made the types stronger.

* feat(ui): add socketio types

* feat(ui): wip nodes

- extract api client method arg types instead of manually declaring them
- update example to display images
- general tidy up

* start building out node translations from frontend state and add notes about missing features

* use reference to sampler_name

* use reference to sampler_name

* add optional apiUrl prop

* feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation

* feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node

* feat(ui): img2img implementation

* feat(ui): get intermediate images working but types are stubbed out

* chore(ui): add support for package mode

* feat(ui): add nodes mode script

* feat(ui): handle random seeds

* fix(ui): fix middleware types

* feat(ui): add rtk action type guard

* feat(ui): disable NodeAPITest

This was polluting the network/socket logs.

* feat(ui): fix parameters panel border color

This commit should be elsewhere but I don't want to break my flow

* feat(ui): make thunk types more consistent

* feat(ui): add type guards for outputs

* feat(ui): load images on socket connect

Rudimentary

* chore(ui): bump redux-toolkit

* docs(ui): update readme

* chore(ui): regenerate api client

* chore(ui): add typescript as dev dependency

I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue.

* feat(ui): begin migrating gallery to nodes

Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way.

* feat(ui): clean up & comment results slice

* fix(ui): separate thunk for initial gallery load so it properly gets index 0

* feat(ui): POST upload working

* fix(ui): restore removed type

* feat(ui): patch api generation for headers access

* chore(ui): regenerate api

* feat(ui): wip gallery migration

* feat(ui): wip gallery migration

* chore(ui): regenerate api

* feat(ui): wip refactor socket events

* feat(ui): disable panels based on app props

* feat(ui): invert logic to be disabled

* disable panels when app mounts

* feat(ui): add support to disableTabs

* docs(ui): organise and update docs

* lang(ui): add toast strings

* feat(ui): wip events, comments, and general refactoring

* feat(ui): add optional token for auth

* feat(ui): export StatusIndicator and ModelSelect for header use

* feat(ui) working on making socket URL dynamic

* feat(ui): dynamic middleware loading

* feat(ui): prep for socket jwt

* feat(ui): migrate cancelation

also updated action names to be event-like instead of declaration-like

sorry, i was scattered and this commit has a lot of unrelated stuff in it.

* fix(ui): fix img2img type

* chore(ui): regenerate api client

* feat(ui): improve InvocationCompleteEvent types

* feat(ui): increase StatusIndicator font size

* fix(ui): fix middleware order for multi-node graphs

* feat(ui): add exampleGraphs object w/ iterations example

* feat(ui): generate iterations graph

* feat(ui): update ModelSelect for nodes API

* feat(ui): add hi-res functionality for txt2img generations

* feat(ui): "subscribe" to particular nodes

feels like a dirty hack but oh well it works

* feat(ui): first steps to node editor ui

* fix(ui): disable event subscription

it is not fully baked just yet

* feat(ui): wip node editor

* feat(ui): remove extraneous field types

* feat(ui): nodes before deleting stuff

* feat(ui): cleanup nodes ui stuff

* feat(ui): hook up nodes to redux

* fix(ui): fix handle

* fix(ui): add basic node edges & connection validation

* feat(ui): add connection validation styling

* feat(ui): increase edge width

* feat(ui): it blends

* feat(ui): wip model handling and graph topology validation

* feat(ui): validation connections w/ graphlib

* docs(ui): update nodes doc

* feat(ui): wip node editor

* chore(ui): rebuild api, update types

* add redux-dynamic-middlewares as a dependency

* feat(ui): add url host transformation

* feat(ui): handle already-connected fields

* feat(ui): rewrite SqliteItemStore in sqlalchemy

* fix(ui): fix sqlalchemy dynamic model instantiation

* feat(ui, nodes): metadata wip

* feat(ui, nodes): models

* feat(ui, nodes): more metadata wip

* feat(ui): wip range/iterate

* fix(nodes): fix sqlite typing

* feat(ui): export new type for invoke component

* tests(nodes): fix test instantiation of ImageField

* feat(nodes): fix LoadImageInvocation

* feat(nodes): add `title` ui hint

* feat(nodes): make ImageField attrs optional

* feat(ui): wip nodes etc

* feat(nodes): roll back sqlalchemy

* fix(nodes): partially address feedback

* fix(backend): roll back changes to pngwriter

* feat(nodes): wip address metadata feedback

* feat(nodes): add seeded rng to RandomRange

* feat(nodes): address feedback

* feat(nodes): move GET images error handling to DiskImageStorage

* feat(nodes): move GET images error handling to DiskImageStorage

* fix(nodes): fix image output schema customization

* feat(ui): img2img/txt2img -> linear

- remove txt2img and img2img tabs
- add linear tab
- add initial image selection to linear parameters accordion

* feat(ui): tidy graph builders

* feat(ui): tidy misc

* feat(ui): improve invocation union types

* feat(ui): wip metadata viewer recall

* feat(ui): move fonts to normal deps

* feat(nodes): fix broken upload

* feat(nodes): add metadata module + tests, thumbnails

- `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service`
- Handles loading/parsing/building metadata, and creating png info objects
- added tests for MetadataModule
- Lifted thumbnail stuff to util

* fix(nodes): revert change to RandomRangeInvocation

* feat(nodes): address feedback

- make metadata a service
- rip out pydantic validation, implement metadata parsing as simple functions
- update tests
- address other minor feedback items

* fix(nodes): fix other tests

* fix(nodes): add metadata service to cli

* fix(nodes): fix latents/image field parsing

* feat(nodes): customise LatentsField schema

* feat(nodes): move metadata parsing to frontend

* fix(nodes): fix metadata test

---------

Co-authored-by: maryhipp <maryhipp@gmail.com>
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-04-22 13:10:20 +10:00
Kyle Schouviller
23d65e7162
[nodes] Add subgraph library, subgraph usage in CLI, and fix subgraph execution (#3180)
* Add latent to latent (img2img equivalent)
Fix a CLI bug with multiple links per node

* Using "latents" instead of "latent"

* [nodes] In-progress implementation of graph library

* Add linking to CLI for graph nodes (still broken)

* Fix subgraph execution, fix subgraph linking in CLI

* Fix LatentsToLatents
2023-04-14 06:41:06 +00:00
Kyle Schouviller
85b020f76c
[nodes] Add latent nodes, storage, and fix iteration bugs (#3091)
* Add latents nodes.
* Fix iteration expansion.
* Add collection generator nodes, math nodes.
* Add noise node.
* Add some graph debug commands to the CLI.
* Fix negative id linking in CLI.
* Fix a CLI bug with multiple links per node.
2023-04-06 04:06:05 +00:00
Lincoln Stein
8ca91b1774 add restoration services to nodes 2023-03-11 17:00:00 -05:00
Lincoln Stein
95954188b2 remove factory pattern
Factory pattern is now removed. Typical usage of the InvokeAIGenerator is now:

```
from invokeai.backend.generator import (
    InvokeAIGeneratorBasicParams,
    Txt2Img,
    Img2Img,
    Inpaint,
)
    params = InvokeAIGeneratorBasicParams(
        model_name = 'stable-diffusion-1.5',
        steps = 30,
        scheduler = 'k_lms',
        cfg_scale = 8.0,
        height = 640,
        width = 640
        )
    print ('=== TXT2IMG TEST ===')
    txt2img = Txt2Img(manager, params)
    outputs = txt2img.generate(prompt='banana sushi', iterations=2)

    for i in outputs:
        print(f'image={output.image}, seed={output.seed}, model={output.params.model_name}, hash={output.model_hash}, steps={output.params.steps}')
```

The `params` argument is optional, so if you wish to accept default
parameters and selectively override them, just do this:

```
    outputs = Txt2Img(manager).generate(prompt='banana sushi',
                                        steps=50,
					scheduler='k_heun',
					model_name='stable-diffusion-2.1'
					)
```
2023-03-10 19:33:04 -05:00
Lincoln Stein
5d37fa6e36 node-based txt2img working without generate 2023-03-09 00:18:29 -05:00
Lincoln Stein
60a98cacef all vestiges of ldm.invoke removed 2023-03-03 01:02:00 -05:00
Lincoln Stein
6a990565ff all files migrated; tweaks needed 2023-03-03 00:02:15 -05:00