Commit Graph

1510 Commits

Author SHA1 Message Date
Lincoln Stein
7dd93cb810 fix merge issues; likely nonfunctional 2024-04-15 21:16:21 -04:00
Lincoln Stein
e93f4d632d
[util] Add generic torch device class (#6174)
* introduce new abstraction layer for GPU devices

* add unit test for device abstraction

* fix ruff

* convert TorchDeviceSelect into a stateless class

* move logic to select context-specific execution device into context API

* add mock hardware environments to pytest

* remove dangling mocker fixture

* fix unit test for running on non-CUDA systems

* remove unimplemented get_execution_device() call

* remove autocast precision

* Multiple changes:

1. Remove TorchDeviceSelect.get_execution_device(), as well as calls to
   context.models.get_execution_device().
2. Rename TorchDeviceSelect to TorchDevice
3. Added back the legacy public API defined in `invocation_api`, including
   choose_precision().
4. Added a config file migration script to accommodate removal of precision=autocast.

* add deprecation warnings to choose_torch_device() and choose_precision()

* fix test crash

* remove app_config argument from choose_torch_device() and choose_torch_dtype()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-04-15 13:12:49 +00:00
Lincoln Stein
651c0b39b1 clear cache on all exceptions 2024-04-12 07:19:16 +10:00
Lincoln Stein
46d23cd868 catch RunTimeError during model to() call rather than OutOfMemoryError 2024-04-12 07:19:16 +10:00
Lincoln Stein
579082ac10 [mm] clear the cache entry for a model that got an OOM during loading 2024-04-12 07:19:16 +10:00
psychedelicious
7bc77ddb40 fix(nodes): doubly-noised latents
When using refiner with a mask (i.e. inpainting), we don't have noise provided as an input to the node.

This situation uniquely hits a code path that wasn't reviewed when gradient denoising was implemented.

That code path does two things wrong:
- It lerp'd the input latents. This was fixed in 5a1f4cb1ce.
- It added noise to the latents an extra time. This is fixed in this change.

We don't need to add noise in `latents_from_embeddings` because we do it just a lines later in `AddsMaskGuidance`.

- Remove the extraneous call to `add_noise`
- Make `seed` a required arg. We never call the function without seed anyways. If we refactor this in the future, it will be clearer that we need to look at how seed is handled.
- Move the call to create the noise to a deeper conditional, just before we call `AddsMaskGuidance`. The created noise tensor is now only used in that function, no need to create it every time.

Note: Whether or not having both noise and latents as inputs on the node is correct is a separate conversation. This change just fixes the issue with the current setup.
2024-04-11 07:21:50 -04:00
Ryan Dick
f9af32a6d1 Fix the padding behavior when max-pooling regional IP-Adapter masks to mirror the downscaling behavior of SD and SDXL. Prior to this change, denoising with input latent dimensions that were not evenly divisible by 8 would raise an exception. 2024-04-09 16:50:43 -04:00
Ryan Dick
fba40eb1bd Fix the padding behavior when max-pooling regional prompt masks to mirror the downscaling behavior of SD and SDXL. Prior to this change, denoising with input latent dimensions that were not evenly divisible by 8 would raise an exception. 2024-04-09 16:50:43 -04:00
Ryan Dick
0c6dd32ece (minor) Fix IP-Adapter conditional logic in CustomAttnProcessor2_0. 2024-04-09 15:06:51 -04:00
Ryan Dick
0bdbfd4d1d Add support for IP-Adapter masks. 2024-04-09 15:06:51 -04:00
Ryan Dick
2e27ed5f3d Pass IP-Adapter scales through the cross_attn_kwargs pathway, since they are the same for all attention layers. This change also helps to prepare for adding IP-Adapter region masks. 2024-04-09 15:06:51 -04:00
Ryan Dick
4a828818da Remove support for Prompt-to-Prompt cross-attention control (aka .swap()). This feature is not widely used. It does not work with SDXL and is incompatible with IP-Adapter and regional prompting. The implementation is also intertwined with both text embedding and the UNet attention layers, resulting in a high maintenance burden. For all of these reasons, we have decided to drop support. 2024-04-09 10:57:02 -04:00
Ryan Dick
182810337c Add utility to_standard_float_mask(...) to convert various mask formats to a standardized format. 2024-04-09 08:12:12 -04:00
Ryan Dick
75ef473748 Pull the upstream changes from diffusers' AttnProcessor2_0 into CustomAttnProcessor2_0. This fixes a bug in CustomAttnProcessor2_0 that was being triggered when peft was not installed. The bug was present in a block of code that was previously copied from diffusers. The bug seems to have been introduced during diffusers' migration to PEFT for their LoRA handling. The upstream bug was fixed in 531e719163. 2024-04-09 08:12:12 -04:00
Ryan Dick
a78df8123f Update the diffusion logic to use the new regional prompting feature. 2024-04-09 08:12:12 -04:00
Ryan Dick
7ca677578e Create a UNetAttentionPatcher for patching UNet models with CustomAttnProcessor2_0 modules. 2024-04-09 08:12:12 -04:00
Ryan Dick
31c456c1e6 Update CustomAttention to support both IP-Adapters and regional prompting. 2024-04-09 08:12:12 -04:00
Ryan Dick
2ce79b61f5 Initialize a RegionalPromptAttnProcessor2_0 class by copying AttnProcessor2_0 from diffusers. 2024-04-09 08:12:12 -04:00
Ryan Dick
109e3f0e7f Add RegionalPromptData class for managing prompt region masks. 2024-04-09 08:12:12 -04:00
Ryan Dick
d1e45585d0 Add TextConditioningRegions to the TextConditioningData data structure. 2024-04-09 08:12:12 -04:00
Ryan Dick
aba023e0c5 Improve documentation of conditioning_data.py. 2024-04-09 08:12:12 -04:00
Ryan Dick
e354c29b52 Rename ConditioningData -> TextConditioningData. 2024-04-09 08:12:12 -04:00
Ryan Dick
a7f363e654 Split ip_adapter_conditioning out from ConditioningData. 2024-04-09 08:12:12 -04:00
Ryan Dick
9b2162e564 Remove scheduler_args from ConditioningData structure. 2024-04-09 08:12:12 -04:00
blessedcoolant
fd1f240853 fix: SDXL Refiner not working properly with Inpainting 2024-04-09 14:13:10 +10:00
psychedelicious
9ab6655491 feat(backend): clean up choose_precision
- Allow user-defined precision on MPS.
- Use more explicit logic to handle all possible cases.
- Add comments.
- Remove the app_config args (they were effectively unused, just get the config using the singleton getter util)
2024-04-07 09:41:05 -04:00
psychedelicious
4068e817d6 fix(mm): typing issues in model cache 2024-04-06 14:35:36 +11:00
psychedelicious
a09d705e4c fix(mm): remove vram check
This check prematurely reports insufficient VRAM on Windows. See #6106 for details.
2024-04-06 14:35:36 +11:00
Lincoln Stein
4571986c63 fix misplaced lock call 2024-04-05 14:32:18 +11:00
Lincoln Stein
812f10730f
adjust free vram calculation for models that will be removed by lazy offloading (#6150)
Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-04-04 22:51:12 -04:00
psychedelicious
f0b1bb0327 feat(nodes): redo tile infill
The previous algorithm errored if the image wasn't divisible by the tile size. I've reimplemented it from scratch to mitigate this issue.

The new algorithm is simpler. We create a pool of tiles, then use them to create an image composed completely of tiles. If there is any awkwardly sized space on the edge of the image, the tiles are cropped to fit.

Finally, paste the original image over the tile image.

I've added a jupyter notebook to do a smoke test of infilling methods, and 10 test images.

The other infill algorithms can be easily tested with the notebook on the same images, though I didn't set that up yet.

Tested and confirmed this gives results just as good as the earlier infill, though of course they aren't the same due to the change in the algorithm.
2024-04-05 08:49:13 +11:00
blessedcoolant
3c195d74a5 fix: bypass edge pixels which cannot transform to tile size
Still need to fix this somehow
2024-04-05 08:49:13 +11:00
blessedcoolant
32a6b758cd wip: Initial Infill Methods Refactor 2024-04-05 08:49:13 +11:00
brandonrising
51ca59c088 Update probe to always use cpu for loading models 2024-04-04 07:34:43 +11:00
psychedelicious
85f53f94f8 feat(mm): include needed vs free in OOM
Gives us a bit more visibility into these errors, which seem to be popping up more frequently with the new MM.
2024-04-04 06:26:15 +11:00
blessedcoolant
be574cb764 fix: incorrect suffix check in ip adapter checkpoint file 2024-04-03 22:38:28 +05:30
blessedcoolant
5f01de1993 chore: ruff and lint fixes 2024-04-03 20:41:51 +05:30
blessedcoolant
e574815413 chore: clean up merge conflicts 2024-04-03 20:28:00 +05:30
blessedcoolant
fb293dcd84 Merge branch 'checkpoint-ip-adapter' of https://github.com/blessedcoolant/InvokeAI into checkpoint-ip-adapter 2024-04-03 20:23:07 +05:30
blessedcoolant
414851f2f0 fix: raise and present the runtime error from the exception 2024-04-03 20:21:50 +05:30
blessedcoolant
2dcbb7223b fix: use Path for ip_adapter_ckpt_path instead of str 2024-04-03 20:21:03 +05:30
blessedcoolant
14a9f74b17 cleanup: use load_file of safetensors directly for loading ip adapters 2024-04-03 12:40:13 +05:30
blessedcoolant
1372ef15b3 fix: Fail when unexpected keys are found in IP Adapter models 2024-04-03 12:40:11 +05:30
blessedcoolant
be1212de9a fix: Raise a better error when incorrect CLIP Vision model is used 2024-04-03 12:40:10 +05:30
blessedcoolant
a14ce0edab chore: rename IPAdapterDiffusersConfig to IPAdapterInvokeAIConfig 2024-04-03 12:40:10 +05:30
blessedcoolant
4a0dfc3b2d ui: improve the clip vision model picker layout 2024-04-03 12:40:08 +05:30
blessedcoolant
936b99bd3c chore: improve types in ip_adapter backend file 2024-04-03 12:40:02 +05:30
blessedcoolant
79f7b61dfe fix: cleanup across various ip adapter files 2024-04-03 12:39:52 +05:30
blessedcoolant
b1c8266e22 feat: add base model recognition for ip adapter safetensor files 2024-04-03 12:39:52 +05:30
blessedcoolant
67afb1763e wip: Initial implementation of safetensor support for IP Adapter 2024-04-03 12:39:52 +05:30