If the user specifies `torch-sdp` as the attention type in `config.yaml`, we can go ahead and use it (if available) rather than always throwing an exception.
* add base definition of download manager
* basic functionality working
* add unit tests for download queue
* add documentation and FastAPI route
* fix docs
* add missing test dependency; fix import ordering
* fix file path length checking on windows
* fix ruff check error
* move release() into the __del__ method
* disable testing of stderr messages due to issues with pytest capsys fixture
* fix unsorted imports
* harmonized implementation of start() and stop() calls in download and & install modules
* Update invokeai/app/services/download/download_base.py
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
* replace test datadir fixture with tmp_path
* replace DownloadJobBase->DownloadJob in download manager documentation
* make source and dest arguments to download_queue.download() an AnyHttpURL and Path respectively
* fix pydantic typecheck errors in the download unit test
* ruff formatting
* add "job cancelled" as an event rather than an exception
* fix ruff errors
* Update invokeai/app/services/download/download_default.py
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* use threading.Event to stop service worker threads; handle unfinished job edge cases
* remove dangling STOP job definition
* fix ruff complaint
* fix ruff check again
* avoid race condition when start() and stop() are called simultaneously from different threads
* avoid race condition in stop() when a job becomes active while shutting down
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Kent Keirsey <31807370+hipsterusername@users.noreply.github.com>
The graph library occasionally causes issues when the default graph changes substantially between versions and pydantic validation fails. See #5289 for an example.
We are not currently using the graph library, so we can disable it until we are ready to use it. It's possible that the workflow library will supersede it anyways.
* remove MacOS Sonoma check in devices.py
As of pytorch 2.1.0, float16 works with our MPS fixes on Sonoma, so the check is no longer needed.
* remove unused platform import
* add code to repopulate model config records after schema update
* reformat for ruff
* migrate model records using db cursor rather than the ModelRecordConfigService
* ruff fixes
* tweak exception reporting
* fix: build frontend in pypi-release workflow
This was missing, resulting in the 3.5.0rc1 having no frontend.
* fix: use node 18, set working directory
- Node 20 has a problem with `pnpm`; set it to Node 18
- Set the working directory for the frontend commands
* Don't copy extraneous paths into installer .zip
* feat(installer): delete frontend build after creating installer
This prevents an empty `dist/` from breaking the app on startup.
* feat: add python dist as release artifact, as input to enable publish to pypi
- The release workflow never runs automatically. It must be manually kicked off.
- The release workflow has an input. When running it from the GH actions UI, you will see a "Publish build on PyPi" prompt. If this value is "true", the workflow will upload the build to PyPi, releasing it. If this is anything else (e.g. "false", the default), the workflow will build but not upload to PyPi.
- The `dist/` folder (where the python package is built) is uploaded as a workflow artifact as a zip file. This can be downloaded and inspected. This allows "dry" runs of the workflow.
- The workflow job and some steps have been renamed to clarify what they do
* translationBot(ui): update translation files
Updated by "Cleanup translation files" hook in Weblate.
Co-authored-by: Hosted Weblate <hosted@weblate.org>
Translate-URL: https://hosted.weblate.org/projects/invokeai/web-ui/
Translation: InvokeAI/Web UI
* freeze yaml migration logic at upgrade to 3.5
* moved migration code to migration_3
---------
Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Hosted Weblate <hosted@weblate.org>
The VAE decode on linear graphs was getting cached. This caused some unexpected behaviour around image outputs.
For example, say you ran the exact same graph twice. The first time, you get an image written to disk and added to gallery. The second time, the VAE decode is cached and no image file is created. But, the UI still gets the graph complete event and selects the first image in the gallery. The second run does not add an image to the gallery.
There are probbably edge cases related to this - the UI does not expect this to happen. I'm not sure how to handle it any better in the UI.
The solution is to not cache VAE decode on the linear graphs, ever. If you run a graph twice in linear, you expect two images.
This simple change disables the node cache for terminal VAE decode nodes in all linear graphs, ensuring you always get images. If they graph was fully cached, all images after the first will be created very quickly of course.
- "Reset Workflow Editor" -> "New Workflow"
- "New Workflow" gets nodes icon & is no longer danger coloured
- When creating a new workflow, if the current workflow has unsaved changes, you get a dialog asking for confirmation. If the current workflow is saved, it immediately creates a new workflow.
- "Download Workflow" -> "Save to File"
- "Upload Workflow" -> "Load from File"
- Moved "Load from File" up 1 in the menu