Node authors may now create their own arbitrary/custom field types. Any pydantic model is supported.
Two notes:
1. Your field type's class name must be unique.
Suggest prefixing fields with something related to the node pack as a kind of namespace.
2. Custom field types function as connection-only fields.
For example, if your custom field has string attributes, you will not get a text input for that attribute when you give a node a field with your custom type.
This is the same behaviour as other complex fields that don't have custom UIs in the workflow editor - like, say, a string collection.
feat(ui): fix tooltips for custom types
We need to hold onto the original type of the field so they don't all just show up as "Unknown".
fix(ui): fix ts error with custom fields
feat(ui): custom field types connection validation
In the initial commit, a custom field's original type was added to the *field templates* only as `originalType`. Custom fields' `type` property was `"Custom"`*. This allowed for type safety throughout the UI logic.
*Actually, it was `"Unknown"`, but I changed it to custom for clarity.
Connection validation logic, however, uses the *field instance* of the node/field. Like the templates, *field instances* with custom types have their `type` set to `"Custom"`, but they didn't have an `originalType` property. As a result, all custom fields could be connected to all other custom fields.
To resolve this, we need to add `originalType` to the *field instances*, then switch the validation logic to use this instead of `type`.
This ended up needing a bit of fanagling:
- If we make `originalType` a required property on field instances, existing workflows will break during connection validation, because they won't have this property. We'd need a new layer of logic to migrate the workflows, adding the new `originalType` property.
While this layer is probably needed anyways, typing `originalType` as optional is much simpler. Workflow migration logic can come layer.
(Technically, we could remove all references to field types from the workflow files, and let the templates hold all this information. This feels like a significant change and I'm reluctant to do it now.)
- Because `originalType` is optional, anywhere we care about the type of a field, we need to use it over `type`. So there are a number of `field.originalType ?? field.type` expressions. This is a bit of a gotcha, we'll need to remember this in the future.
- We use `Array.prototype.includes()` often in the workflow editor, e.g. `COLLECTION_TYPES.includes(type)`. In these cases, the const array is of type `FieldType[]`, and `type` is is `FieldType`.
Because we now support custom types, the arg `type` is now widened from `FieldType` to `string`.
This causes a TS error. This behaviour is somewhat controversial (see https://github.com/microsoft/TypeScript/issues/14520). These expressions are now rewritten as `COLLECTION_TYPES.some((t) => t === type)` to satisfy TS. It's logically equivalent.
fix(ui): typo
feat(ui): add CustomCollection and CustomPolymorphic field types
feat(ui): add validation for CustomCollection & CustomPolymorphic types
- Update connection validation for custom types
- Use simple string parsing to determine if a field is a collection or polymorphic type.
- No longer need to keep a list of collection and polymorphic types.
- Added runtime checks in `baseinvocation.py` to ensure no fields are named in such a way that it could mess up the new parsing
chore(ui): remove errant console.log
fix(ui): rename 'nodes.currentConnectionFieldType' -> 'nodes.connectionStartFieldType'
This was confusingly named and kept tripping me up. Renamed to be consistent with the `reactflow` `ConnectionStartParams` type.
fix(ui): fix ts error
feat(nodes): add runtime check for custom field names
"Custom", "CustomCollection" and "CustomPolymorphic" are reserved field names.
chore(ui): add TODO for revising field type names
wip refactor fieldtype structured
wip refactor field types
wip refactor types
wip refactor types
fix node layout
refactor field types
chore: mypy
organisation
organisation
organisation
fix(nodes): fix field orig_required, field_kind and input statuses
feat(nodes): remove broken implementation of default_factory on InputField
Use of this could break connection validation due to the difference in node schemas required fields and invoke() required args.
Removed entirely for now. It wasn't ever actually used by the system, because all graphs always had values provided for fields where default_factory was used.
Also, pydantic is smart enough to not reuse the same object when specifying a default value - it clones the object first. So, the common pattern of `default_factory=list` is extraneous. It can just be `default=[]`.
fix(nodes): fix InputField name validation
workflow validation
validation
chore: ruff
feat(nodes): fix up baseinvocation comments
fix(ui): improve typing & logic of buildFieldInputTemplate
improved error handling in parseFieldType
fix: back compat for deprecated default_factory and UIType
feat(nodes): do not show node packs loaded log if none loaded
chore(ui): typegen
* working on recall height/width
* working on adding resize
* working on feature
* fix(ui): move added translation from dist/ to public/
* fix(ui): use `metadata` as hotkey cb dependency
Using `imageDTO` may result in stale data being used
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* eslint added and new string added
* strings and translation hook added
* more changes made
* missing translation added
* final errors resolve in progress
* all errors resolved
* fix(ui): fix missing import of `t()`
* fix(ui): use plurals for moving images to board translation
* fix(ui): fix typo in translation key
* fix(ui): do not use translation for "invoke ai"
* chore(ui): lint
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* first string only to test
* more strings changed
* almost half strings added in json file
* more strings added
* more changes
* few strings and t function changed
* resolved
* errors resolved
* chore(ui): fmt en.json
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Add a LinearUIOutputInvocation node to be the new terminal node for Linear UI graphs. This node is private and hidden from the Workflow Editor, as it is an implementation detail.
The Linear UI was using the Save Image node for this purpose. It allowed every linear graph to end a single node type, which handled saving metadata and board. This substantially reduced the complexity of the linear graphs.
This caused two related issues:
- Images were saved to disk twice
- Noticeable delay between when an image was decoded and showed up in the UI
To resolve this, the new LinearUIOutputInvocation node will handle adding an image to a board if one is provided.
Metadata is no longer provided in this unified node. Instead, the metadata graph helpers now need to know the node to add metadata to and provide it to the last node that actually outputs an image. This is a `l2i` node for txt2img & img2img graphs, and a different image-outputting node for canvas graphs.
HRF poses another complication, in that it changes the terminal node. To handle this, a new metadata util is added called `setMetadataReceivingNode()`. HRF calls this to change the node that should receive the graph's metadata.
This resolves the duplicate images issue and improves perf without otherwise changing the user experience.
This rule enforces no arrow functions in component props. In practice, it means all functions passed as component props must be wrapped in `useCallback()`.
This is a performance optimization to prevent unnecessary rerenders.
The rule is added and all violations have been fixed, whew!
* adding VAE recall when using all parameters
* adding VAE to the RecallParameters tab in ImageMetadataActions
* checking for nil vae and casting to null if undefined
* adding default VAE to recall actions list if VAE is nullish
* fix(ui): use `lodash-es` for tree-shakeable imports
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* working
* added selector for method
* refactoring graph
* added ersgan method
* fixing yarn build
* add tooltips
* a conjuction
* rephrase
* removed manual sliders, set HRF to calculate dimensions automatically to match 512^2 pixels
* working
* working
* working
* fixed tooltip
* add hrf to use all parameters
* adding hrf method to parameters
* working on parameter recall
* working on parameter recall
* cleaning
* fix(ui): fix unnecessary casts in addHrfToGraph
* chore(ui): use camelCase in addHrfToGraph
* fix(ui): do not add HRF metadata unless HRF is added to graph
* fix(ui): remove unused imports in addHrfToGraph
* feat(ui): do not hide HRF params when disabled, only disable them
* fix(ui): remove unused vars in addHrfToGraph
* feat(ui): default HRF str to 0.35, method ESRGAN
* fix(ui): use isValidBoolean to check hrfEnabled param
* fix(nodes): update CoreMetadataInvocation fields for HRF
* feat(ui): set hrf strength default to 0.45
* fix(ui): set default hrf strength in configSlice
* feat(ui): use translations for HRF features
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Also added config options for metadata and workflow debounce times (`metadataFetchDebounce` & `workflowFetchDebounce`).
Falls back to 0 if not provided.
In OSS, because we have no major latency concerns, the debounce is 0. But in other environments, it may be desirable to set this to something like 300ms.
- Refactor how metadata is handled to support a user-defined metadata in graphs
- Update workflow embed handling
- Update UI to work with these changes
- Update tests to support metadata/workflow changes
* #4665 hides value of the corresponding metadata item by click on arrow
* #4787 return recall button back:)
* #4787 optional hide of metadata item, truncation and scrolling
* remove unused import
* #4787 recall parameters as separate tab in panel
* #4787 remove debug code
* fix(ui): undo changes to dist/locales/en.json
This file is autogenerated by our translation system and shouldn't be modified directly
* feat(ui): use scrollbar-enabled component for parameter recall tab
* fix(ui): revert unnecessary changes to DataViewer component
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* UI for bulk downloading boards or groups of images
* placeholder route for bulk downloads that does nothing
* lint
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
- Update backend metadata for t2i adapter
- Fix typo in `T2IAdapterInvocation`: `ip_adapter_model` -> `t2i_adapter_model`
- Update linear graphs to use t2i adapter
- Add client metadata recall for t2i adapter
- Fix bug with controlnet metadata recall - processor should be set to 'none' when recalling a control adapter
Control adapters logic/state/ui is now generalized to hold controlnet, ip_adapter and t2i_adapter. In the future, other control adapter types can be added.
TODO:
- Limit IP adapter to 1
- Add T2I adapter to linear graphs
- Fix autoprocess
- T2I metadata saving & recall
- Improve on control adapters UI
Selections were not being `uniqBy()`'d, or were `uniqBy()`'d without a proper iteratee. This results in duplicate images in selections in certain situations.
Add correct `uniqBy()` to the reducer to prevent this in the future.
This caused a crapload of network requests any time an image was generated.
The counts are necessary to handle the logic for inserting images into existing image list caches; we have to keep track of the counts.
Replace tag invalidation with manual cache updates in all cases, except the initial request (which is necessary to get the initial image counts).
One subtle change is to make the counts an object instead of a number. This is required for `immer` to handle draft states. This should be raised as a bug with RTK Query, as no error is thrown when attempting to update a primitive immer draft.
* feat(ui): max upscale pixels config
Add `maxUpscalePixels: number` to the app config. The number should be the *total* number of pixels eg `maxUpscalePixels: 4096 * 4096`.
If not provided, any size image may be upscaled.
If the config is provided, users will see be advised if their image is too large for either model, or told to switch to an x2 model if it's only too large for x4.
The message is via tooltip in the popover and via toast if the user uses the hotkey to upscale.
* feat(ui): "mayUpscale" -> "isAllowedToUpscale"
* add control net to useRecallParams
* got recall controlnets working
* fix metadata viewer controlnet
* fix type errors
* fix controlnet metadata viewer
* add ip adapter to metadata
* added ip adapter to recall parameters
* got ip adapter recall working, still need to fix type errors
* fix type issues
* clean up logs
* python formatting
* cleanup
* fix(ui): only store `image_name` as ip adapter image
* fix(ui): use nullish coalescing operator for numbers
Need to use the nullish coalescing operator `??` instead of false-y coalescing operator `||` when the value being check is a number. This prevents unintended coalescing when the value is zero and therefore false-y.
* feat(ui): fall back on default values for ip adapter metadata
* fix(ui): remove unused schema
* feat(ui): re-use existing schemas in metadata schema
* fix(ui): do not disable invocationCache
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* add control net to useRecallParams
* got recall controlnets working
* fix metadata viewer controlnet
* fix type errors
* fix controlnet metadata viewer
* set control image and use correct processor type and node
* clean up logs
* recall processor using substring
* feat(ui): enable controlNet when recalling one
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* fix(config): fix typing issues in `config/`
`config/invokeai_config.py`:
- use `Optional` for things that are optional
- fix typing of `ram_cache_size()` and `vram_cache_size()`
- remove unused and incorrectly typed method `autoconvert_path`
- fix types and logic for `parse_args()`, in which `InvokeAIAppConfig.initconf` *must* be a `DictConfig`, but function would allow it to be set as a `ListConfig`, which presumably would cause issues elsewhere
`config/base.py`:
- use `cls` for first arg of class methods
- use `Optional` for things that are optional
- fix minor type issue related to setting of `env_prefix`
- remove unused `add_subparser()` method, which calls `add_parser()` on an `ArgumentParser` (method only available on the `_SubParsersAction` object, which is returned from ArgumentParser.add_subparsers()`)
* feat: queued generation and batches
Due to a very messy branch with broad addition of `isort` on `main` alongside it, some git surgery was needed to get an agreeable git history. This commit represents all of the work on queued generation. See PR for notes.
* chore: flake8, isort, black
* fix(nodes): fix incorrect service stop() method
* fix(nodes): improve names of a few variables
* fix(tests): fix up tests after changes to batches/queue
* feat(tests): add unit tests for session queue helper functions
* feat(ui): dynamic prompts is always enabled
* feat(queue): add queue_status_changed event
* feat(ui): wip queue graphs
* feat(nodes): move cleanup til after invoker startup
* feat(nodes): add cancel_by_batch_ids
* feat(ui): wip batch graphs & UI
* fix(nodes): remove `Batch.batch_id` from required
* fix(ui): cleanup and use fixedCacheKey for all mutations
* fix(ui): remove orphaned nodes from canvas graphs
* fix(nodes): fix cancel_by_batch_ids result count
* fix(ui): only show cancel batch tooltip when batches were canceled
* chore: isort
* fix(api): return `[""]` when dynamic prompts generates no prompts
Just a simple fallback so we always have a prompt.
* feat(ui): dynamicPrompts.combinatorial is always on
There seems to be little purpose in using the combinatorial generation for dynamic prompts. I've disabled it by hiding it from the UI and defaulting combinatorial to true. If we want to enable it again in the future it's straightforward to do so.
* feat: add queue_id & support logic
* feat(ui): fix upscale button
It prepends the upscale operation to queue
* feat(nodes): return queue item when enqueuing a single graph
This facilitates one-off graph async workflows in the client.
* feat(ui): move controlnet autoprocess to queue
* fix(ui): fix non-serializable DOMRect in redux state
* feat(ui): QueueTable performance tweaks
* feat(ui): update queue list
Queue items expand to show the full queue item. Just as JSON for now.
* wip threaded session_processor
* feat(nodes,ui): fully migrate queue to session_processor
* feat(nodes,ui): add processor events
* feat(ui): ui tweaks
* feat(nodes,ui): consolidate events, reduce network requests
* feat(ui): cleanup & abstract queue hooks
* feat(nodes): optimize batch permutation
Use a generator to do only as much work as is needed.
Previously, though we only ended up creating exactly as many queue items as was needed, there was still some intermediary work that calculated *all* permutations. When that number was very high, the system had a very hard time and used a lot of memory.
The logic has been refactored to use a generator. Additionally, the batch validators are optimized to return early and use less memory.
* feat(ui): add seed behaviour parameter
This dynamic prompts parameter allows the seed to be randomized per prompt or per iteration:
- Per iteration: Use the same seed for all prompts in a single dynamic prompt expansion
- Per prompt: Use a different seed for every single prompt
"Per iteration" is appropriate for exploring a the latents space with a stable starting noise, while "Per prompt" provides more variation.
* fix(ui): remove extraneous random seed nodes from linear graphs
* fix(ui): fix controlnet autoprocess not working when queue is running
* feat(queue): add timestamps to queue status updates
Also show execution time in queue list
* feat(queue): change all execution-related events to use the `queue_id` as the room, also include `queue_item_id` in InvocationQueueItem
This allows for much simpler handling of queue items.
* feat(api): deprecate sessions router
* chore(backend): tidy logging in `dependencies.py`
* fix(backend): respect `use_memory_db`
* feat(backend): add `config.log_sql` (enables sql trace logging)
* feat: add invocation cache
Supersedes #4574
The invocation cache provides simple node memoization functionality. Nodes that use the cache are memoized and not re-executed if their inputs haven't changed. Instead, the stored output is returned.
## Results
This feature provides anywhere some significant to massive performance improvement.
The improvement is most marked on large batches of generations where you only change a couple things (e.g. different seed or prompt for each iteration) and low-VRAM systems, where skipping an extraneous model load is a big deal.
## Overview
A new `invocation_cache` service is added to handle the caching. There's not much to it.
All nodes now inherit a boolean `use_cache` field from `BaseInvocation`. This is a node field and not a class attribute, because specific instances of nodes may want to opt in or out of caching.
The recently-added `invoke_internal()` method on `BaseInvocation` is used as an entrypoint for the cache logic.
To create a cache key, the invocation is first serialized using pydantic's provided `json()` method, skipping the unique `id` field. Then python's very fast builtin `hash()` is used to create an integer key. All implementations of `InvocationCacheBase` must provide a class method `create_key()` which accepts an invocation and outputs a string or integer key.
## In-Memory Implementation
An in-memory implementation is provided. In this implementation, the node outputs are stored in memory as python classes. The in-memory cache does not persist application restarts.
Max node cache size is added as `node_cache_size` under the `Generation` config category.
It defaults to 512 - this number is up for discussion, but given that these are relatively lightweight pydantic models, I think it's safe to up this even higher.
Note that the cache isn't storing the big stuff - tensors and images are store on disk, and outputs include only references to them.
## Node Definition
The default for all nodes is to use the cache. The `@invocation` decorator now accepts an optional `use_cache: bool` argument to override the default of `True`.
Non-deterministic nodes, however, should set this to `False`. Currently, all random-stuff nodes, including `dynamic_prompt`, are set to `False`.
The field name `use_cache` is now effectively a reserved field name and possibly a breaking change if any community nodes use this as a field name. In hindsight, all our reserved field names should have been prefixed with underscores or something.
## One Gotcha
Leaf nodes probably want to opt out of the cache, because if they are not cached, their outputs are not saved again.
If you run the same graph multiple times, you only end up with a single image output, because the image storage side-effects are in the `invoke()` method, which is bypassed if we have a cache hit.
## Linear UI
The linear graphs _almost_ just work, but due to the gotcha, we need to be careful about the final image-outputting node. To resolve this, a `SaveImageInvocation` node is added and used in the linear graphs.
This node is similar to `ImagePrimitive`, except it saves a copy of its input image, and has `use_cache` set to `False` by default.
This is now the leaf node in all linear graphs, and is the only node in those graphs with `use_cache == False` _and_ the only node with `is_intermedate == False`.
## Workflow Editor
All nodes now have a footer with a new `Use Cache [ ]` checkbox. It defaults to the value set by the invocation in its python definition, but can be changed by the user.
The workflow/node validation logic has been updated to migrate old workflows to use the new default values for `use_cache`. Users may still want to review the settings that have been chosen. In the event of catastrophic failure when running this migration, the default value of `True` is applied, as this is correct for most nodes.
Users should consider saving their workflows after loading them in and having them updated.
## Future Enhancements - Callback
A future enhancement would be to provide a callback to the `use_cache` flag that would be run as the node is executed to determine, based on its own internal state, if the cache should be used or not.
This would be useful for `DynamicPromptInvocation`, where the deterministic behaviour is determined by the `combinatorial: bool` field.
## Future Enhancements - Persisted Cache
Similar to how the latents storage is backed by disk, the invocation cache could be persisted to the database or disk. We'd need to be very careful about deserializing outputs, but it's perhaps worth exploring in the future.
* fix(ui): fix queue list item width
* feat(nodes): do not send the whole node on every generator progress
* feat(ui): strip out old logic related to sessions
Things like `isProcessing` are no longer relevant with queue. Removed them all & updated everything be appropriate for queue. May be a few little quirks I've missed...
* feat(ui): fix up param collapse labels
* feat(ui): click queue count to go to queue tab
* tidy(queue): update comment, query format
* feat(ui): fix progress bar when canceling
* fix(ui): fix circular dependency
* feat(nodes): bail on node caching logic if `node_cache_size == 0`
* feat(nodes): handle KeyError on node cache pop
* feat(nodes): bypass cache codepath if caches is disabled
more better no do thing
* fix(ui): reset api cache on connect/disconnect
* feat(ui): prevent enqueue when no prompts generated
* feat(ui): add queue controls to workflow editor
* feat(ui): update floating buttons & other incidental UI tweaks
* fix(ui): fix missing/incorrect translation keys
* fix(tests): add config service to mock invocation services
invoking needs access to `node_cache_size` to occur
* optionally remove pause/resume buttons from queue UI
* option to disable prepending
* chore(ui): remove unused file
* feat(queue): remove `order_id` entirely, `item_id` is now an autoinc pk
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
A few weeks back, we changed how the canvas scales in response to changes in window/panel size.
This introduced a bug where if we the user hadn't already clicked the canvas tab once to initialize the stage elements, the stage's dimensions were zero, then the calculation of the stage's scale ends up zero, then something is divided by that zero and Konva dies.
This is only a problem on Chromium browsers - somehow Firefox handles it gracefully.
Now, when calculating the stage scale, never return a 0 - if it's a zero, return 1 instead. This is enough to fix the crash, but the image ends up centered on the top-left corner of the stage (the origin of the canvas).
Because the canvas elements are not initialized at this point (we haven't switched tabs yet), the stage dimensions fall back to (0,0). This means the center of the stage is also (0,0) - so the image is centered on (0,0), the top-left corner of the stage.
To fix this, we need to ensure we:
- Change to the canvas tab before actually setting the image, so the stage elements are able to initialize
- Use `flushSync` to flush DOM updates for this tab change so we actually have DOM elements to work with
- Update the stage dimensions once on first load of it (so in the effect that sets up the resize observer, we update the stage dimensions)
The result now is the expected behaviour - images sent to canvas do not crash and end up in the center of the canvas.
JSX is not serializable, so it cannot be in redux. Non-serializable global state may be put into `nanostores`.
- Use `nanostores` for `customStarUI`
- Use `nanostores` for `headerComponent`
- Re-enable the serializable & immutable check redux middlewares
- Node versions are now added to node templates
- Node data (including in workflows) include the version of the node
- On loading a workflow, we check to see if the node and template versions match exactly. If not, a warning is logged to console.
- The node info icon (top-right corner of node, which you may click to open the notes editor) now shows the version and mentions any issues.
- Some workflow validation logic has been shifted around and is now executed in a redux listener.