Commit Graph

786 Commits

Author SHA1 Message Date
psychedelicious
8958e820c8 feat(nodes): update invocation context for mm2, update nodes model usage 2024-02-29 13:16:37 -05:00
Brandon Rising
aa5d124d70 References to context.services.model_manager.store.get_model can only accept keys, remove invalid assertion 2024-02-29 13:16:37 -05:00
Brandon Rising
5cc73ec5dd Remove references to model_records service, change submodel property on ModelInfo to submodel_type to support new params in model manager 2024-02-29 13:16:37 -05:00
Lincoln Stein
1d95fe6116 fix a number of typechecking errors 2024-02-29 13:16:37 -05:00
Lincoln Stein
d56337f2d8 make model manager v2 ready for PR review
- Replace legacy model manager service with the v2 manager.

- Update invocations to use new load interface.

- Fixed many but not all type checking errors in the invocations. Most
  were unrelated to model manager

- Updated routes. All the new routes live under the route tag
  `model_manager_v2`. To avoid confusion with the old routes,
  they have the URL prefix `/api/v2/models`. The old routes
  have been de-registered.

- Added a pytest for the loader.

- Updated documentation in contributing/MODEL_MANAGER.md
2024-02-29 13:16:37 -05:00
Lincoln Stein
8f1b7355df probe for required encoder for IPAdapters and add to config 2024-02-29 13:16:37 -05:00
Lincoln Stein
49df4fa120 BREAKING CHANGES: invocations now require model key, not base/type/name
- Implement new model loader and modify invocations and embeddings

- Finish implementation loaders for all models currently supported by
  InvokeAI.

- Move lora, textual_inversion, and model patching support into
  backend/embeddings.

- Restore support for model cache statistics collection (a little ugly,
  needs work).

- Fixed up invocations that load and patch models.

- Move seamless and silencewarnings utils into better location
2024-02-29 13:16:37 -05:00
psychedelicious
acc50d9bd2 chore(nodes): "SAMPLER_NAME_VALUES" -> "SCHEDULER_NAME_VALUES"
This was named inaccurately.
2024-02-29 13:16:36 -05:00
psychedelicious
08636e42af feat(nodes): use LATENT_SCALE_FACTOR in primitives.py, noise.py
- LatentsOutput.build
- NoiseOutput.build
- Noise.width, Noise.height multiple_of
2024-02-29 13:16:36 -05:00
psychedelicious
2d74a39810 feat(nodes): extract LATENT_SCALE_FACTOR to constants.py 2024-02-29 13:16:36 -05:00
psychedelicious
9983eddc01 Revert "feat(nodes): use LATENT_SCALE_FACTOR const in tensor output builders"
This reverts commit ef18fc546560277302f3886e456da9a47e8edce0.
2024-02-29 13:16:36 -05:00
psychedelicious
b62be80762 feat(nodes): use LATENT_SCALE_FACTOR const in tensor output builders 2024-02-29 13:16:36 -05:00
psychedelicious
d9dc5d58be revert(nodes): revert making tensors/conditioning use item storage
Turns out they are just different enough in purpose that the implementations would be rather unintuitive. I've made a separate ObjectSerializer service to handle tensors and conditioning.

Refined the class a bit too.
2024-02-29 13:16:36 -05:00
psychedelicious
0c149cbd3b feat(nodes): replace latents service with tensors and conditioning services
- New generic class `PickleStorageBase`, implements the same API as `LatentsStorageBase`, use for storing non-serializable data via pickling
- Implementation `PickleStorageTorch` uses `torch.save` and `torch.load`, same as `LatentsStorageDisk`
- Add `tensors: PickleStorageBase[torch.Tensor]` to `InvocationServices`
- Add `conditioning: PickleStorageBase[ConditioningFieldData]` to `InvocationServices`
- Remove `latents` service and all `LatentsStorage` classes
- Update `InvocationContext` and all usage of old `latents` service to use the new services/context wrapper methods
2024-02-29 13:16:36 -05:00
psychedelicious
3563d4ecf7 tidy(nodes): delete onnx.py
It doesn't work and keeping it updated to prevent the app from starting was getting tedious. Deleted.
2024-02-29 13:16:36 -05:00
psychedelicious
c4ea96dec2 fix(nodes): rearrange fields.py to avoid needing forward refs 2024-02-29 13:16:36 -05:00
psychedelicious
1e4b953ccd feat(nodes): add WithBoard field helper class
This class works the same way as `WithMetadata` - it simply adds a `board` field to the node. The context wrapper function is able to pull the board id from this. This allows image-outputting nodes to get a board field "for free", and have their outputs automatically saved to it.

This is a breaking change for node authors who may have a field called `board`, because it makes `board` a reserved field name. I'll look into how to avoid this - maybe by naming this invoke-managed field `_board` to avoid collisions?

Supporting changes:
- `WithBoard` is added to all image-outputting nodes, giving them the ability to save to board.
- Unused, duplicate `WithMetadata` and `WithWorkflow` classes are deleted from `baseinvocation.py`. The "real" versions are in `fields.py`.
- Remove `LinearUIOutputInvocation`. Now that all nodes that output images also have a `board` field by default, this node is no longer necessary. See comment here for context: https://github.com/invoke-ai/InvokeAI/pull/5491#discussion_r1480760629
- Without `LinearUIOutputInvocation`, the `ImagesInferface.update` method is no longer needed, and removed.

Note: This commit does not bump all node versions. I will ensure that is done correctly before merging the PR of which this commit is a part.

Note: A followup commit will implement the frontend changes to support this change.
2024-02-29 13:16:36 -05:00
psychedelicious
0ff466ebc4 fix(nodes): restore missing context type annotations 2024-02-29 13:16:36 -05:00
psychedelicious
87d28b2519 fix(nodes): restore type annotations for InvocationContext 2024-02-29 13:16:36 -05:00
psychedelicious
4e266e7466 feat(nodes): create invocation_api.py
This is the public API for invocations.

Everything a custom node might need should be re-exported from this file.
2024-02-29 13:16:36 -05:00
psychedelicious
26b17d778d feat(nodes): move ConditioningFieldData to conditioning_data.py 2024-02-29 13:16:35 -05:00
psychedelicious
cc4a4f1275 chore: ruff 2024-02-29 13:16:35 -05:00
psychedelicious
2254a0c078 feat(nodes): update all invocations to use new invocation context
Update all invocations to use the new context. The changes are all fairly simple, but there are a lot of them.

Supporting minor changes:
- Patch bump for all nodes that use the context
- Update invocation processor to provide new context
- Minor change to `EventServiceBase` to accept a node's ID instead of the dict version of a node
- Minor change to `ModelManagerService` to support the new wrapped context
- Fanagling of imports to avoid circular dependencies
2024-02-29 13:16:35 -05:00
psychedelicious
c3f0d2e273 tidy(nodes): move all field things to fields.py
Unfortunately, this is necessary to prevent circular imports at runtime.
2024-02-29 13:16:35 -05:00
blessedcoolant
e82c21b5ba chore: rename DWPose to DW Openpose 2024-02-12 11:12:45 -05:00
blessedcoolant
50b93992cf cleanup: Remove Openpose Image Processor 2024-02-12 11:12:45 -05:00
blessedcoolant
67daf1751c fix: lint erros 2024-02-12 11:12:45 -05:00
blessedcoolant
7d80261d47 chore: Add code attribution for the DWPoseDetector 2024-02-12 11:12:45 -05:00
blessedcoolant
67cbfeb33d feat: Add output image resizing for DWPose 2024-02-12 11:12:45 -05:00
blessedcoolant
0a27b0379f feat: Initial implementation of DWPoseDetector 2024-02-12 11:12:45 -05:00
psychedelicious
c5f069a255 feat(backend): remove dependency on basicsr
`basicsr` has a hard dependency on torchvision <= 0.16 and is unmaintained. Extract the code we need from it and remove the dep.

Closes #5108
2024-02-11 08:34:54 +11:00
blessedcoolant
7cb49e65bd feat: Add Resolution to DepthAnything 2024-01-23 14:13:50 -06:00
blessedcoolant
f36a691219 feat: Make the depth anything small model the default 2024-01-23 14:13:50 -06:00
blessedcoolant
8f5e2cbcc7 feat: Add Depth Anything PreProcessor 2024-01-23 14:13:50 -06:00
JPPhoto
6a2856e46f Updated field descriptions 2024-01-23 02:26:30 +11:00
Jonathan
892fe62264 Add Ideal Size node to core nodes
The Ideal Size node is useful for High-Res Optimization as it gives the optimum size for creating an initial generation with minimal artifacts (duplication and other strangeness) from today's models.

After inclusion, front end graph generation can be simplified by offloading calculations for HRO initial generation to this node.
2024-01-23 02:26:30 +11:00
psychedelicious
989aaedc7f feat(nodes): add title for cfg rescale mult on denoise_latents 2024-01-03 13:18:50 +11:00
psychedelicious
2700d0e769 fix(nodes): fix constraints/validation for controlnet
- Fix `weight` and `begin_step_percent`, the constraints were mixed up
- Add model validatort to ensure `begin_step_percent < end_step_percent`
- Bump version
2024-01-02 07:28:53 -05:00
Brandon
32ad742f3e
Ti trigger from prompt util (#5294)
* Pull logic for extracting TI triggers into a util function

* Remove duplicate regex for ti triggers

* Fix linting for ruff

* Remove unused imports
2023-12-22 03:04:44 +00:00
skunkworxdark
96a717c4ba In CalculateImageTilesEvenSplitInvocation to have overlap_fraction becomes just overlap. This is now in pixels rather than as a fraction of the tile size.
Update calc_tiles_even_split() with the same change. Ensuring Overlap is within allowed size

Update even_split tests
2023-12-17 15:10:50 +00:00
Jonathan
ea4ef042f3 Ruff fixes 2023-12-14 12:47:10 +11:00
Jonathan
18b2bcbbee Added Classification from baseinvocation 2023-12-14 12:47:10 +11:00
Jonathan
5ad88c7f86 Fixed classification 2023-12-14 12:47:10 +11:00
Jonathan
3b04fef31d Added classification 2023-12-14 12:47:10 +11:00
Jonathan
bec888923a Fix for ruff 2023-12-14 12:47:10 +11:00
Jonathan
c6235049c7 Add an unsharp mask node to core nodes
Unsharp mask is an image operation that, despite its name, sharpens an image. Like a Gaussian blur, it takes a radius and strength.
2023-12-14 12:47:10 +11:00
psychedelicious
e10f6e8962 fix(nodes): mark CalculateImageTilesInvocation as beta
missed this when I added classification
2023-12-13 20:33:25 -05:00
psychedelicious
3d64bc886d feat(nodes): flag all tiled upscaling nodes as beta 2023-12-12 16:43:05 +11:00
psychedelicious
1a136d6167 feat(nodes): fix classification docstrings 2023-12-12 16:43:05 +11:00
psychedelicious
43f2837117 feat(nodes): add invocation classifications
Invocations now have a classification:
- Stable: LTS
- Beta: LTS planned, API may change
- Prototype: No LTS planned, API may change, may be removed entirely

The `@invocation` decorator has a new arg `classification`, and an enum `Classification` is added to `baseinvocation.py`.

The default is Stable; this is a non-breaking change.

The classification is presented in the node header as a hammer icon (Beta) or flask icon (prototype).

The icon has a tooltip briefly describing the classification.
2023-12-12 16:43:05 +11:00