This new name more accurately represents that these are fields with a type of `T | T[]`, where the "base" type must be the same on both sides of the union.
Custom nodes have a new attribute `node_pack` indicating the node pack they came from.
- This is displayed in the UI in the icon icon tooltip.
- If a workflow is loaded and a node is unavailable, its node pack will be displayed (if it is known).
- If a workflow is migrated from v1 to v2, and the node is unknown, it falls back to "Unknown". If the missing node pack is installed and the node is updated, the node pack will be updated as expected.
Node authors may now create their own arbitrary/custom field types. Any pydantic model is supported.
Two notes:
1. Your field type's class name must be unique.
Suggest prefixing fields with something related to the node pack as a kind of namespace.
2. Custom field types function as connection-only fields.
For example, if your custom field has string attributes, you will not get a text input for that attribute when you give a node a field with your custom type.
This is the same behaviour as other complex fields that don't have custom UIs in the workflow editor - like, say, a string collection.
feat(ui): fix tooltips for custom types
We need to hold onto the original type of the field so they don't all just show up as "Unknown".
fix(ui): fix ts error with custom fields
feat(ui): custom field types connection validation
In the initial commit, a custom field's original type was added to the *field templates* only as `originalType`. Custom fields' `type` property was `"Custom"`*. This allowed for type safety throughout the UI logic.
*Actually, it was `"Unknown"`, but I changed it to custom for clarity.
Connection validation logic, however, uses the *field instance* of the node/field. Like the templates, *field instances* with custom types have their `type` set to `"Custom"`, but they didn't have an `originalType` property. As a result, all custom fields could be connected to all other custom fields.
To resolve this, we need to add `originalType` to the *field instances*, then switch the validation logic to use this instead of `type`.
This ended up needing a bit of fanagling:
- If we make `originalType` a required property on field instances, existing workflows will break during connection validation, because they won't have this property. We'd need a new layer of logic to migrate the workflows, adding the new `originalType` property.
While this layer is probably needed anyways, typing `originalType` as optional is much simpler. Workflow migration logic can come layer.
(Technically, we could remove all references to field types from the workflow files, and let the templates hold all this information. This feels like a significant change and I'm reluctant to do it now.)
- Because `originalType` is optional, anywhere we care about the type of a field, we need to use it over `type`. So there are a number of `field.originalType ?? field.type` expressions. This is a bit of a gotcha, we'll need to remember this in the future.
- We use `Array.prototype.includes()` often in the workflow editor, e.g. `COLLECTION_TYPES.includes(type)`. In these cases, the const array is of type `FieldType[]`, and `type` is is `FieldType`.
Because we now support custom types, the arg `type` is now widened from `FieldType` to `string`.
This causes a TS error. This behaviour is somewhat controversial (see https://github.com/microsoft/TypeScript/issues/14520). These expressions are now rewritten as `COLLECTION_TYPES.some((t) => t === type)` to satisfy TS. It's logically equivalent.
fix(ui): typo
feat(ui): add CustomCollection and CustomPolymorphic field types
feat(ui): add validation for CustomCollection & CustomPolymorphic types
- Update connection validation for custom types
- Use simple string parsing to determine if a field is a collection or polymorphic type.
- No longer need to keep a list of collection and polymorphic types.
- Added runtime checks in `baseinvocation.py` to ensure no fields are named in such a way that it could mess up the new parsing
chore(ui): remove errant console.log
fix(ui): rename 'nodes.currentConnectionFieldType' -> 'nodes.connectionStartFieldType'
This was confusingly named and kept tripping me up. Renamed to be consistent with the `reactflow` `ConnectionStartParams` type.
fix(ui): fix ts error
feat(nodes): add runtime check for custom field names
"Custom", "CustomCollection" and "CustomPolymorphic" are reserved field names.
chore(ui): add TODO for revising field type names
wip refactor fieldtype structured
wip refactor field types
wip refactor types
wip refactor types
fix node layout
refactor field types
chore: mypy
organisation
organisation
organisation
fix(nodes): fix field orig_required, field_kind and input statuses
feat(nodes): remove broken implementation of default_factory on InputField
Use of this could break connection validation due to the difference in node schemas required fields and invoke() required args.
Removed entirely for now. It wasn't ever actually used by the system, because all graphs always had values provided for fields where default_factory was used.
Also, pydantic is smart enough to not reuse the same object when specifying a default value - it clones the object first. So, the common pattern of `default_factory=list` is extraneous. It can just be `default=[]`.
fix(nodes): fix InputField name validation
workflow validation
validation
chore: ruff
feat(nodes): fix up baseinvocation comments
fix(ui): improve typing & logic of buildFieldInputTemplate
improved error handling in parseFieldType
fix: back compat for deprecated default_factory and UIType
feat(nodes): do not show node packs loaded log if none loaded
chore(ui): typegen
* working on recall height/width
* working on adding resize
* working on feature
* fix(ui): move added translation from dist/ to public/
* fix(ui): use `metadata` as hotkey cb dependency
Using `imageDTO` may result in stale data being used
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* eslint added and new string added
* strings and translation hook added
* more changes made
* missing translation added
* final errors resolve in progress
* all errors resolved
* fix(ui): fix missing import of `t()`
* fix(ui): use plurals for moving images to board translation
* fix(ui): fix typo in translation key
* fix(ui): do not use translation for "invoke ai"
* chore(ui): lint
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* first string only to test
* more strings changed
* almost half strings added in json file
* more strings added
* more changes
* few strings and t function changed
* resolved
* errors resolved
* chore(ui): fmt en.json
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Resolves two bugs introduced in #5106:
1. Linear UI images sometimes didn't make it to the gallery.
This was a race condition. The VAE decode nodes were handled by the socketInvocationComplete listener. At that moment, the image was marked as intermediate. Immediately after this node was handled, a LinearUIOutputInvocation, introduced in #5106, was handled by socketInvocationComplete. This node internally sets changed the image to not intermediate.
During the handling of that socketInvocationComplete, RTK Query would sometimes use its cache instead of retrieving the image DTO again. The result is that the UI never got the message that the image was not intermediate, so it wasn't added to the gallery.
This is resolved by refactoring the socketInvocationComplete listener. We now skip the gallery processing for linear UI events, except for the LinearUIOutputInvocation. Images now always make it to the gallery, and network requests to get image DTOs are substantially reduced.
2. Canvas temp images always went into the gallery
The LinearUIOutputInvocation was always setting its image's is_intermediate to false. This included all canvas images and resulted in all canvas temp images going to gallery.
This is resolved by making LinearUIOutputInvocation set is_intermediate based on `self.is_intermediate`. The behaviour now more or less mirroring the behaviour of is_intermediate on other image-outputting nodes, except it doesn't save the image again - only changes it.
One extra minor change - LinearUIOutputInvocation only changes is_intermediate if it differs from the image's current setting. Very minor optimisation.
Add a LinearUIOutputInvocation node to be the new terminal node for Linear UI graphs. This node is private and hidden from the Workflow Editor, as it is an implementation detail.
The Linear UI was using the Save Image node for this purpose. It allowed every linear graph to end a single node type, which handled saving metadata and board. This substantially reduced the complexity of the linear graphs.
This caused two related issues:
- Images were saved to disk twice
- Noticeable delay between when an image was decoded and showed up in the UI
To resolve this, the new LinearUIOutputInvocation node will handle adding an image to a board if one is provided.
Metadata is no longer provided in this unified node. Instead, the metadata graph helpers now need to know the node to add metadata to and provide it to the last node that actually outputs an image. This is a `l2i` node for txt2img & img2img graphs, and a different image-outputting node for canvas graphs.
HRF poses another complication, in that it changes the terminal node. To handle this, a new metadata util is added called `setMetadataReceivingNode()`. HRF calls this to change the node that should receive the graph's metadata.
This resolves the duplicate images issue and improves perf without otherwise changing the user experience.
A workflow's nodes may update itself, if its major version matches the template's major version.
If the major versions do not match, the user will need to delete and re-add the node (current behaviour).
The update functionality is not automatic (for now). The logic to update the node is pretty simple, but I want to ensure it works well first before doing it automatically when a workflow is loaded.
- New `Details` tab on Workflow Inspector, displays node title, type, version, and notes
- Button to update the node is displayed on the `Details` tab
- Add hook to determine if a node needs an update, may be updated (i.e. major versions match), and the callback to update the node in state
- Remove the notes modal from the little info icon
- Modularize the node building logic
This rule enforces no arrow functions in component props. In practice, it means all functions passed as component props must be wrapped in `useCallback()`.
This is a performance optimization to prevent unnecessary rerenders.
The rule is added and all violations have been fixed, whew!
* adding VAE recall when using all parameters
* adding VAE to the RecallParameters tab in ImageMetadataActions
* checking for nil vae and casting to null if undefined
* adding default VAE to recall actions list if VAE is nullish
* fix(ui): use `lodash-es` for tree-shakeable imports
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* drop-down for the color picker
* fixed the bug in alpha value
* designing done
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* working
* added selector for method
* refactoring graph
* added ersgan method
* fixing yarn build
* add tooltips
* a conjuction
* rephrase
* removed manual sliders, set HRF to calculate dimensions automatically to match 512^2 pixels
* working
* working
* working
* fixed tooltip
* add hrf to use all parameters
* adding hrf method to parameters
* working on parameter recall
* working on parameter recall
* cleaning
* fix(ui): fix unnecessary casts in addHrfToGraph
* chore(ui): use camelCase in addHrfToGraph
* fix(ui): do not add HRF metadata unless HRF is added to graph
* fix(ui): remove unused imports in addHrfToGraph
* feat(ui): do not hide HRF params when disabled, only disable them
* fix(ui): remove unused vars in addHrfToGraph
* feat(ui): default HRF str to 0.35, method ESRGAN
* fix(ui): use isValidBoolean to check hrfEnabled param
* fix(nodes): update CoreMetadataInvocation fields for HRF
* feat(ui): set hrf strength default to 0.45
* fix(ui): set default hrf strength in configSlice
* feat(ui): use translations for HRF features
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Also added config options for metadata and workflow debounce times (`metadataFetchDebounce` & `workflowFetchDebounce`).
Falls back to 0 if not provided.
In OSS, because we have no major latency concerns, the debounce is 0. But in other environments, it may be desirable to set this to something like 300ms.
- Refactor how metadata is handled to support a user-defined metadata in graphs
- Update workflow embed handling
- Update UI to work with these changes
- Update tests to support metadata/workflow changes
This fixes a weird issue where the list images method needed to handle `None` for its `limit` and `offset` arguments, in order to get a count of all intermediates.
Upgrade pydantic and fastapi to latest.
- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1
**Big Changes**
There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.
**Invocations**
The biggest change relates to invocation creation, instantiation and validation.
Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.
Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.
With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.
This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.
In the end, this implementation is cleaner.
**Invocation Fields**
In pydantic v2, you can no longer directly add or remove fields from a model.
Previously, we did this to add the `type` field to invocations.
**Invocation Decorators**
With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.
A similar technique is used for `invocation_output()`.
**Minor Changes**
There are a number of minor changes around the pydantic v2 models API.
**Protected `model_` Namespace**
All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".
Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.
```py
class IPAdapterModelField(BaseModel):
model_name: str = Field(description="Name of the IP-Adapter model")
base_model: BaseModelType = Field(description="Base model")
model_config = ConfigDict(protected_namespaces=())
```
**Model Serialization**
Pydantic models no longer have `Model.dict()` or `Model.json()`.
Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.
**Model Deserialization**
Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.
Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.
```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```
**Field Customisation**
Pydantic `Field`s no longer accept arbitrary args.
Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.
**Schema Customisation**
FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.
This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised
The specific aren't important, but this does present additional surface area for bugs.
**Performance Improvements**
Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.
I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
There's a bug in chrome that screws with headers on fetch requests and 307 responses. This causes images to fail to copy in the commercial environment.
This change attempts to get around this by copying images in a different way (similar to how the canvas works). When the user requests a copy we:
- create an `<img />` element
- set `crossOrigin` if needed
- add an onload handler:
- create a canvas element
- draw image onto it
- export canvas to blob
This is wrapped in a promise which resolves to the blob, which can then be copied to clipboard.
---
A customized version of Konva's `useImage` hook is also included, which returns the image blob in addition to the `<img />` element. Unfortunately, this hook is not suitable for use across the app, because it does all the image fetching up front, regardless of whether we actually want to copy the image.
In other words, we'd have to fetch the whole image file even if the user is just skipping through image metadata, in order to have the blob to copy. The callback approach means we only fetch the image when the user clicks copy. The hook is thus currently unused.
- Make all metadata items optional. This will reduce errors related to metadata not being provided when we update the backend but old queue items still exist
- Fix a bug in t2i adapter metadata handling where it checked for ip adapter metadata instaed of t2i adapter metadata
- Fix some metadata fields that were not using `InputField`
* added HrfScale type with initial value
* working
* working
* working
* working
* working
* added addHrfToGraph
* continueing to implement this
* working on this
* comments
* working
* made hrf into its own collapse
* working on adding strength slider
* working
* working
* refactoring
* working
* change of this working: 0
* removed onnx support since apparently its not used
* working
* made scale integer
* trying out psycicpebbles idea
* working
* working on this
* working
* added toggle
* comments
* self review
* fixing things
* remove 'any' type
* fixing typing
* changed initial strength value to 3 (large values cause issues)
* set denoising start to be 1 - strength to resemble image to image
* set initial value
* added image to image
* pr1
* pr2
* updating to resolution finding
* working
* working
* working
* working
* working
* working
* working
* working
* working
* use memo
* connect rescale hw to noise
* working
* fixed min bug
* nit
* hides elements conditionally
* style
* feat(ui): add config for HRF, disable if feature disabled or ONNX model in use
* fix(ui): use `useCallback` for HRF toggle
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* #4665 hides value of the corresponding metadata item by click on arrow
* #4787 return recall button back:)
* #4787 optional hide of metadata item, truncation and scrolling
* remove unused import
* #4787 recall parameters as separate tab in panel
* #4787 remove debug code
* fix(ui): undo changes to dist/locales/en.json
This file is autogenerated by our translation system and shouldn't be modified directly
* feat(ui): use scrollbar-enabled component for parameter recall tab
* fix(ui): revert unnecessary changes to DataViewer component
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Refactor services folder/module structure.
**Motivation**
While working on our services I've repeatedly encountered circular imports and a general lack of clarity regarding where to put things. The structure introduced goes a long way towards resolving those issues, setting us up for a clean structure going forward.
**Services**
Services are now in their own folder with a few files:
- `services/{service_name}/__init__.py`: init as needed, mostly empty now
- `services/{service_name}/{service_name}_base.py`: the base class for the service
- `services/{service_name}/{service_name}_{impl_type}.py`: the default concrete implementation of the service - typically one of `sqlite`, `default`, or `memory`
- `services/{service_name}/{service_name}_common.py`: any common items - models, exceptions, utilities, etc
Though it's a bit verbose to have the service name both as the folder name and the prefix for files, I found it is _extremely_ confusing to have all of the base classes just be named `base.py`. So, at the cost of some verbosity when importing things, I've included the service name in the filename.
There are some minor logic changes. For example, in `InvocationProcessor`, instead of assigning the model manager service to a variable to be used later in the file, the service is used directly via the `Invoker`.
**Shared**
Things that are used across disparate services are in `services/shared/`:
- `default_graphs.py`: previously in `services/`
- `graphs.py`: previously in `services/`
- `paginatation`: generic pagination models used in a few services
- `sqlite`: the `SqliteDatabase` class, other sqlite-specific things
* UI for bulk downloading boards or groups of images
* placeholder route for bulk downloads that does nothing
* lint
---------
Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
The canvas needs to be set to staging mode as soon as a canvas-destined batch is enqueued. If the batch is is fully canceled before an image is generated, we need to remove that batch from the canvas `batchIds` watchlist, else canvas gets stuck in staging mode with no way to exit.
The changes here allow the batch status to be tracked, and if a batch has all its items completed, we can remove it from the `batchIds` watchlist. The `batchIds` watchlist now accurately represents *incomplete* canvas batches, fixing this cause of soft lock.
- Update backend metadata for t2i adapter
- Fix typo in `T2IAdapterInvocation`: `ip_adapter_model` -> `t2i_adapter_model`
- Update linear graphs to use t2i adapter
- Add client metadata recall for t2i adapter
- Fix bug with controlnet metadata recall - processor should be set to 'none' when recalling a control adapter
Control adapters logic/state/ui is now generalized to hold controlnet, ip_adapter and t2i_adapter. In the future, other control adapter types can be added.
TODO:
- Limit IP adapter to 1
- Add T2I adapter to linear graphs
- Fix autoprocess
- T2I metadata saving & recall
- Improve on control adapters UI
* Bump diffusers to 0.21.2.
* Add T2IAdapterInvocation boilerplate.
* Add T2I-Adapter model to model-management.
* (minor) Tidy prepare_control_image(...).
* Add logic to run the T2I-Adapter models at the start of the DenoiseLatentsInvocation.
* Add logic for applying T2I-Adapter weights and accumulating.
* Add T2IAdapter to MODEL_CLASSES map.
* yarn typegen
* Add model probes for T2I-Adapter models.
* Add all of the frontend boilerplate required to use T2I-Adapter in the nodes editor.
* Add T2IAdapterModel.convert_if_required(...).
* Fix errors in T2I-Adapter input image sizing logic.
* Fix bug with handling of multiple T2I-Adapters.
* black / flake8
* Fix typo
* yarn build
* Add num_channels param to prepare_control_image(...).
* Link to upstream diffusers bugfix PR that currently requires a workaround.
* feat: Add Color Map Preprocessor
Needed for the color T2I Adapter
* feat: Add Color Map Preprocessor to Linear UI
* Revert "feat: Add Color Map Preprocessor"
This reverts commit a1119a00bf.
* Revert "feat: Add Color Map Preprocessor to Linear UI"
This reverts commit bd8a9b82d8.
* Fix T2I-Adapter field rendering in workflow editor.
* yarn build, yarn typegen
---------
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
This is fired when the dnd image is moved over the 'none' board. Weren't defaulting to 'none' for the image's board_id, resulting in it being possible to drag a 'none' image onto 'none'.
Selections were not being `uniqBy()`'d, or were `uniqBy()`'d without a proper iteratee. This results in duplicate images in selections in certain situations.
Add correct `uniqBy()` to the reducer to prevent this in the future.
This caused a crapload of network requests any time an image was generated.
The counts are necessary to handle the logic for inserting images into existing image list caches; we have to keep track of the counts.
Replace tag invalidation with manual cache updates in all cases, except the initial request (which is necessary to get the initial image counts).
One subtle change is to make the counts an object instead of a number. This is required for `immer` to handle draft states. This should be raised as a bug with RTK Query, as no error is thrown when attempting to update a primitive immer draft.
* feat(ui): max upscale pixels config
Add `maxUpscalePixels: number` to the app config. The number should be the *total* number of pixels eg `maxUpscalePixels: 4096 * 4096`.
If not provided, any size image may be upscaled.
If the config is provided, users will see be advised if their image is too large for either model, or told to switch to an x2 model if it's only too large for x4.
The message is via tooltip in the popover and via toast if the user uses the hotkey to upscale.
* feat(ui): "mayUpscale" -> "isAllowedToUpscale"
* Initial commit of edge drag feature.
* Fixed build warnings
* code cleanup and drag to existing node
* improved isValidConnection check
* fixed build issues, removed cyclic dependency
* edge created nodes now spawn at cursor
* Add Node popover will no longer show when using drag to delete an edge.
* Fixed collection handling, added priority for handles matching name of source handle, removed current image/notes nodes from filtered list
* Fixed not properly clearing startParams when closing the Add Node popover
* fix(ui): do not allow Collect -> Iterate connection
This can be removed when #3956 is resolved
* feat(ui): use existing node validation logic in add-node-on-drop
This logic handles a number of special cases
---------
Co-authored-by: Millun Atluri <Millu@users.noreply.github.com>
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
* add control net to useRecallParams
* got recall controlnets working
* fix metadata viewer controlnet
* fix type errors
* fix controlnet metadata viewer
* add ip adapter to metadata
* added ip adapter to recall parameters
* got ip adapter recall working, still need to fix type errors
* fix type issues
* clean up logs
* python formatting
* cleanup
* fix(ui): only store `image_name` as ip adapter image
* fix(ui): use nullish coalescing operator for numbers
Need to use the nullish coalescing operator `??` instead of false-y coalescing operator `||` when the value being check is a number. This prevents unintended coalescing when the value is zero and therefore false-y.
* feat(ui): fall back on default values for ip adapter metadata
* fix(ui): remove unused schema
* feat(ui): re-use existing schemas in metadata schema
* fix(ui): do not disable invocationCache
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
This hook was rerendering any time anything changed. Moved it to a logical component, put its useEffects inside the component. This reduces the effect of the rerenders to just that tiny always-null component.
* add control net to useRecallParams
* got recall controlnets working
* fix metadata viewer controlnet
* fix type errors
* fix controlnet metadata viewer
* set control image and use correct processor type and node
* clean up logs
* recall processor using substring
* feat(ui): enable controlNet when recalling one
---------
Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
- Current image number & total are displayed
- Left/right wrap around instead of stopping on first/last image
- Disable the left/right/number buttons when showing base layer
- improved translations