Commit Graph

13 Commits

Author SHA1 Message Date
psychedelicious
992b02aa65 tidy(nodes): move all field things to fields.py
Unfortunately, this is necessary to prevent circular imports at runtime.
2024-03-01 10:42:33 +11:00
psychedelicious
3a136420d5 chore: ruff check - fix flake8-comprensions 2023-11-11 10:55:23 +11:00
psychedelicious
c238a7f18b feat(api): chore: pydantic & fastapi upgrade
Upgrade pydantic and fastapi to latest.

- pydantic~=2.4.2
- fastapi~=103.2
- fastapi-events~=0.9.1

**Big Changes**

There are a number of logic changes needed to support pydantic v2. Most changes are very simple, like using the new methods to serialized and deserialize models, but there are a few more complex changes.

**Invocations**

The biggest change relates to invocation creation, instantiation and validation.

Because pydantic v2 moves all validation logic into the rust pydantic-core, we may no longer directly stick our fingers into the validation pie.

Previously, we (ab)used models and fields to allow invocation fields to be optional at instantiation, but required when `invoke()` is called. We directly manipulated the fields and invocation models when calling `invoke()`.

With pydantic v2, this is much more involved. Changes to the python wrapper do not propagate down to the rust validation logic - you have to rebuild the model. This causes problem with concurrent access to the invocation classes and is not a free operation.

This logic has been totally refactored and we do not need to change the model any more. The details are in `baseinvocation.py`, in the `InputField` function and `BaseInvocation.invoke_internal()` method.

In the end, this implementation is cleaner.

**Invocation Fields**

In pydantic v2, you can no longer directly add or remove fields from a model.

Previously, we did this to add the `type` field to invocations.

**Invocation Decorators**

With pydantic v2, we instead use the imperative `create_model()` API to create a new model with the additional field. This is done in `baseinvocation.py` in the `invocation()` wrapper.

A similar technique is used for `invocation_output()`.

**Minor Changes**

There are a number of minor changes around the pydantic v2 models API.

**Protected `model_` Namespace**

All models' pydantic-provided methods and attributes are prefixed with `model_` and this is considered a protected namespace. This causes some conflict, because "model" means something to us, and we have a ton of pydantic models with attributes starting with "model_".

Forunately, there are no direct conflicts. However, in any pydantic model where we define an attribute or method that starts with "model_", we must tell set the protected namespaces to an empty tuple.

```py
class IPAdapterModelField(BaseModel):
    model_name: str = Field(description="Name of the IP-Adapter model")
    base_model: BaseModelType = Field(description="Base model")

    model_config = ConfigDict(protected_namespaces=())
```

**Model Serialization**

Pydantic models no longer have `Model.dict()` or `Model.json()`.

Instead, we use `Model.model_dump()` or `Model.model_dump_json()`.

**Model Deserialization**

Pydantic models no longer have `Model.parse_obj()` or `Model.parse_raw()`, and there are no `parse_raw_as()` or `parse_obj_as()` functions.

Instead, you need to create a `TypeAdapter` object to parse python objects or JSON into a model.

```py
adapter_graph = TypeAdapter(Graph)
deserialized_graph_from_json = adapter_graph.validate_json(graph_json)
deserialized_graph_from_dict = adapter_graph.validate_python(graph_dict)
```

**Field Customisation**

Pydantic `Field`s no longer accept arbitrary args.

Now, you must put all additional arbitrary args in a `json_schema_extra` arg on the field.

**Schema Customisation**

FastAPI and pydantic schema generation now follows the OpenAPI version 3.1 spec.

This necessitates two changes:
- Our schema customization logic has been revised
- Schema parsing to build node templates has been revised

The specific aren't important, but this does present additional surface area for bugs.

**Performance Improvements**

Pydantic v2 is a full rewrite with a rust backend. This offers a substantial performance improvement (pydantic claims 5x to 50x depending on the task). We'll notice this the most during serialization and deserialization of sessions/graphs, which happens very very often - a couple times per node.

I haven't done any benchmarks, but anecdotally, graph execution is much faster. Also, very larges graphs - like with massive iterators - are much, much faster.
2023-10-17 14:59:25 +11:00
Martin Kristiansen
5615c31799 isort wip 2023-09-12 13:01:58 -04:00
psychedelicious
d9148fb619 feat(nodes): add version to node schemas
The `@invocation` decorator is extended with an optional `version` arg. On execution of the decorator, the version string is parsed using the `semver` package (this was an indirect dependency and has been added to `pyproject.toml`).

All built-in nodes are set with `version="1.0.0"`.

The version is added to the OpenAPI Schema for consumption by the client.
2023-09-04 19:08:18 +10:00
psychedelicious
044d4c107a feat(nodes): move all invocation metadata (type, title, tags, category) to decorator
All invocation metadata (type, title, tags and category) are now defined in decorators.

The decorators add the `type: Literal["invocation_type"]: "invocation_type"` field to the invocation.

Category is a new invocation metadata, but it is not used by the frontend just yet.

- `@invocation()` decorator for invocations

```py
@invocation(
    "sdxl_compel_prompt",
    title="SDXL Prompt",
    tags=["sdxl", "compel", "prompt"],
    category="conditioning",
)
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
    ...
```

- `@invocation_output()` decorator for invocation outputs

```py
@invocation_output("clip_skip_output")
class ClipSkipInvocationOutput(BaseInvocationOutput):
    ...
```

- update invocation docs
- add category to decorator
- regen frontend types
2023-08-30 18:35:12 +10:00
Martin Kristiansen
537ae2f901 Resolving merge conflicts for flake8 2023-08-18 15:52:04 +10:00
psychedelicious
c48fd9c083 feat(nodes): refactor parameter/primitive nodes
Refine concept of "parameter" nodes to "primitives":
- integer
- float
- string
- boolean
- image
- latents
- conditioning
- color

Each primitive has:
- A field definition, if it is not already python primitive value. The field is how this primitive value is passed between nodes. Collections are lists of the field in node definitions. ex: `ImageField` & `list[ImageField]`
- A single output class. ex: `ImageOutput`
- A collection output class. ex: `ImageCollectionOutput`
- A node, which functions to load or pass on the primitive value. ex: `ImageInvocation` (in this case, `ImageInvocation` replaces `LoadImage`)

Plus a number of related changes:
- Reorganize these into `primitives.py`
- Update all nodes and logic to use primitives
- Consolidate "prompt" outputs into "string" & "mask" into "image" (there's no reason for these to be different, the function identically)
- Update default graphs & tests
- Regen frontend types & minor frontend tidy related to changes
2023-08-16 09:54:38 +10:00
psychedelicious
f49fc7fb55 feat: node editor
squashed rebase on main after backendd refactor
2023-08-16 09:54:38 +10:00
Martin Kristiansen
218b6d0546 Apply black 2023-07-27 10:54:01 -04:00
blessedcoolant
0c18c5d603 feat: Add titles and tags to all Nodes 2023-07-19 02:26:45 +12:00
psychedelicious
73f63853ba fix(nodes): use context for logger in param_easing 2023-06-27 23:30:10 -04:00
Gregg Helt
c647056287
Feat/easy param (#3504)
* Testing change to LatentsToText to allow setting different cfg_scale values per diffusion step.

* Adding first attempt at float param easing node, using Penner easing functions.

* Core implementation of ControlNet and MultiControlNet.

* Added support for ControlNet and MultiControlNet to legacy non-nodal Txt2Img in backend/generator. Although backend/generator will likely disappear by v3.x, right now they are very useful for testing core ControlNet and MultiControlNet functionality while node codebase is rapidly evolving.

* Added example of using ControlNet with legacy Txt2Img generator

* Resolving rebase conflict

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Resolving conflicts in rebase to origin/main

* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())

* changes to base class for controlnet nodes

* Added HED, LineArt, and OpenPose ControlNet nodes

* Added an additional "raw_processed_image" output port to controlnets, mainly so could route ImageField to a ShowImage node

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* More rebase repair.

* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port  ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...

* Fixed use of ControlNet control_weight parameter

* Fixed lint-ish formatting error

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Refactored controlnet node to output ControlField that bundles control info.

* changes to base class for controlnet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Cleaning up TextToLatent arg testing

* Cleaning up mistakes after rebase.

* Removed last bits of dtype and and device hardwiring from controlnet section

* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.

* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)

* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.

* Added dependency on controlnet-aux v0.0.3

* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.

* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.

* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.

* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.

* Cleaning up after ControlNet refactor in TextToLatentsInvocation

* Extended node-based ControlNet support to LatentsToLatentsInvocation.

* chore(ui): regen api client

* fix(ui): add value to conditioning field

* fix(ui): add control field type

* fix(ui): fix node ui type hints

* fix(nodes): controlnet input accepts list or single controlnet

* Moved to controlnet_aux v0.0.4, reinstated Zoe controlnet preprocessor. Also in pyproject.toml  had to specify downgrade of timm to 0.6.13 _after_ controlnet-aux installs timm >= 0.9.2, because timm >0.6.13 breaks Zoe preprocessor.

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Switching to ControlField for output from controlnet nodes.

* Resolving conflicts in rebase to origin/main

* Refactored ControlNet nodes so they subclass from PreprocessedControlInvocation, and only need to override run_processor(image) (instead of reimplementing invoke())

* changes to base class for controlnet nodes

* Added HED, LineArt, and OpenPose ControlNet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Added support for using multiple control nets. Unfortunately this breaks direct usage of Control node output port  ==> TextToLatent control input port -- passing through a Collect node is now required. Working on fixing this...

* Fixed use of ControlNet control_weight parameter

* Core implementation of ControlNet and MultiControlNet.

* Added first controlnet preprocessor node for canny edge detection.

* Initial port of controlnet node support from generator-based TextToImageInvocation node to latent-based TextToLatentsInvocation node

* Switching to ControlField for output from controlnet nodes.

* Refactored controlnet node to output ControlField that bundles control info.

* changes to base class for controlnet nodes

* Added more preprocessor nodes for:
      MidasDepth
      ZoeDepth
      MLSD
      NormalBae
      Pidi
      LineartAnime
      ContentShuffle
Removed pil_output options, ControlNet preprocessors should always output as PIL. Removed diagnostics and other general cleanup.

* Prep for splitting pre-processor and controlnet nodes

* Refactored controlnet nodes: split out controlnet stuff into separate node, stripped controlnet stuff form image processing/analysis nodes.

* Added resizing of controlnet image based on noise latent. Fixes a tensor mismatch issue.

* Cleaning up TextToLatent arg testing

* Cleaning up mistakes after rebase.

* Removed last bits of dtype and and device hardwiring from controlnet section

* Refactored ControNet support to consolidate multiple parameters into data struct. Also redid how multiple controlnets are handled.

* Added support for specifying which step iteration to start using
each ControlNet, and which step to end using each controlnet (specified as fraction of total steps)

* Cleaning up prior to submitting ControlNet PR. Mostly turning off diagnostic printing. Also fixed error when there is no controlnet input.

* Commented out ZoeDetector. Will re-instate once there's a controlnet-aux release that supports it.

* Switched CotrolNet node modelname input from free text to default list of popular ControlNet model names.

* Fix to work with current stable release of controlnet_aux (v0.0.3). Turned of pre-processor params that were added post v0.0.3. Also change defaults for shuffle.

* Refactored most of controlnet code into its own method to declutter TextToLatents.invoke(), and make upcoming integration with LatentsToLatents easier.

* Cleaning up after ControlNet refactor in TextToLatentsInvocation

* Extended node-based ControlNet support to LatentsToLatentsInvocation.

* chore(ui): regen api client

* fix(ui): fix node ui type hints

* fix(nodes): controlnet input accepts list or single controlnet

* Added Mediapipe image processor for use as ControlNet preprocessor.
Also hacked in ability to specify HF subfolder when loading ControlNet models from string.

* Fixed bug where MediapipFaceProcessorInvocation was ignoring max_faces and min_confidence params.

* Added nodes for float params: ParamFloatInvocation and FloatCollectionOutput. Also added FloatOutput.

* Added mediapipe install requirement. Should be able to remove once controlnet_aux package adds mediapipe to its requirements.

* Added float to FIELD_TYPE_MAP ins constants.ts

* Progress toward improvement in fieldTemplateBuilder.ts  getFieldType()

* Fixed controlnet preprocessors and controlnet handling in TextToLatents to work with revised Image services.

* Cleaning up from merge, re-adding cfg_scale to FIELD_TYPE_MAP

* Making sure cfg_scale of type list[float] can be used in image metadata, to support param easing for cfg_scale

* Fixed math for per-step param easing.

* Added option to show plot of param value at each step

* Just cleaning up after adding param easing plot option, removing vestigial code.

* Modified control_weight ControlNet param to be polistmorphic --
can now be either a single float weight applied for all steps, or a list of floats of size total_steps, that specifies weight for each step.

* Added more informative error message when _validat_edge() throws an error.

* Just improving parm easing bar chart title to include easing type.

* Added requirement for easing-functions package

* Taking out some diagnostic prints.

* Added option to use both easing function and mirror of easing function together.

* Fixed recently introduced problem (when pulled in main), triggered by num_steps in StepParamEasingInvocation not having a default value -- just added default.

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-06-11 16:27:44 +10:00