Commit Graph

306 Commits

Author SHA1 Message Date
psychedelicious
8ad3d8f738 tidy(app): clean up app changes for canvas v2 2024-08-30 22:19:54 +10:00
psychedelicious
b939192b16 feat(app): add origin to session queue
The origin is an optional field indicating the queue item's origin. For example, "canvas" when the queue item originated from the canvas or "workflows" when the queue item originated from the workflows tab. If omitted, we assume the queue item originated from the API directly.

- Add migration to add the nullable column to the `session_queue` table.
- Update relevant event payloads with the new field.
- Add `cancel_by_origin` method to `session_queue` service and corresponding route. This is required for the canvas to bail out early when staging images.
- Add `origin` to both `SessionQueueItem` and `Batch` - it needs to be provided initially via the batch and then passed onto the queue item.
-
2024-08-30 22:18:48 +10:00
Mary Hipp
3e7923d072 fix(api): allow updating of type for style preset 2024-08-19 16:12:39 -04:00
psychedelicious
7a3eaa8da9 feat(api): save file as prompt_templates.csv 2024-08-16 09:51:46 +10:00
Mary Hipp
599db7296f export only user style presets 2024-08-15 16:07:32 -04:00
Mary Hipp
68dac6349d Merge remote-tracking branch 'origin/main' into maryhipp/export-presets 2024-08-15 11:21:56 -04:00
psychedelicious
60d754d1df feat(api): tidy style presets import logic
- Extract parsing into utility function
- Log import errors
- Forbid extra properties on the imported data
2024-08-15 09:47:49 -04:00
psychedelicious
356661459b feat(api): support JSON for preset imports
This allows us to support Fooocus format presets.
2024-08-15 09:47:49 -04:00
Mary Hipp
2d58754789 feat(api): add endpoint to take a CSV, parse it, validate it, and create many style preset entries 2024-08-15 09:47:49 -04:00
Mary Hipp
a9014673a0 wip export 2024-08-15 09:00:11 -04:00
Mary Hipp
e5f7c2a9b7 add type safety / validation to form data payloads and allow type to be passed through api 2024-08-13 13:00:31 -04:00
Mary Hipp
9c732ac3b1 Merge remote-tracking branch 'origin/main' into maryhipp/style-presets 2024-08-12 14:53:45 -04:00
Mary Hipp
4837e578b2 api: update dir path for style preset images, update payload for create/update formdata 2024-08-12 12:00:14 -04:00
psychedelicious
8ecf72838d fix(api): image downloads with correct filename
Closes #6730
2024-08-10 09:53:56 -04:00
psychedelicious
33624fc2fa fix(api): duplicate operation id for get_image_full
There's a FastAPI bug that results in the OpenAPI spec outputting the same operation id for each operation when specifying multiple HTTP methods.

- Discussion: https://github.com/tiangolo/fastapi/discussions/8449
- Pending PR to fix: https://github.com/tiangolo/fastapi/pull/10694

In our case, we have a `get_image_full` endpoint that handles GET and HEAD.

This results in an invalid OpenAPI schema. A workaround is to use two route decorators for the operation handler. This works as expected - HEAD requests get the header, and GET requests get the resource. And the OpenAPI schema is valid.
2024-08-10 07:45:23 -04:00
Mary Hipp
97553a7de2 API/DB updates per PR feedback 2024-08-09 16:27:37 -04:00
Mary Hipp
581029ebaa ruff 2024-08-08 14:21:37 -04:00
Mary Hipp
9a4d075074 fix path for style_preset_images, fix png type when converting blobs to files, built view mode components 2024-08-08 12:31:20 -04:00
Mary Hipp
0b0abfbe8f clean up image implementation 2024-08-07 10:36:38 -04:00
Mary Hipp
cc96dcf0ed style preset images 2024-08-07 09:58:27 -04:00
Mary Hipp
2604fd9fde a whole bunch of stuff 2024-08-06 15:31:13 -04:00
Mary Hipp
217fe40d99 feat(api): add style_presets router, make sure all CRUD is working, add is_default 2024-08-02 12:29:54 -04:00
Lincoln Stein
633bbb4e85
[MM2] Use typed ModelRecordChanges for model_install() rather than untyped dict (#6645)
* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* documentation fix

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* documentation fix

* remove v9 pnpm lockfile

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* [MM2] replace untyped config dict passed to install_model with typed ModelRecordChanges

- adjusted frontend to work with new schema
- used this facility to assign "starter model" names and descriptions to the installed
  models.

* remove v9 pnpm lockfile

* regenerate schema.ts

* prettified

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
2024-07-23 21:41:00 +00:00
psychedelicious@windows
7c0dfd74a5 fix(api): deleting large images fails
This issue is caused by a race condition. When a large image is served to the client, it is done using a streaming `FileResponse`. This concurrently serves the image straight from disk. The file is kept open by FastAPI until the image is fully served.

When a user deletes an image before the file is done serving, the delete fails because the file is still held by FastAPI.

To reproduce the issue:
- Create a very large image (8k reliably creates the issue).
- Create a smaller image, so that the first image in the gallery is not the large image.
- Refresh the app. The small image should be selected.
- Select the large image and immediately delete it. You have to be fast, to delete it before it finishes loading.
- In the terminal, we expect to see an error saying `Failed to delete image file`, and the image does not disappear from the UI.
- After a short wait, once the image has fully loaded, try deleting it again. We expect this to work.

The workaround is to instead serve the image from memory.

Loading the image to memory is very fast, so there is only a tiny window in which we could create the race condition, but it technically could still occur, because FastAPI is asynchronous and handles requests concurrently.

Once we load the image into memory, deletions of that image will work. Then we return a normal `Response` object with the image bytes. This is essentially what `FileResponse` does - except it uses `anyio.open_file`, which is async.

The tradeoff is that the server thread is blocked while opening the file. I think this is a fair tradeoff.

A future enhancement could be to implement soft deletion of images (db is already set up for this), and then clean up deleted image files on startup/shutdown. We could move back to using the async `FileResponse` for best responsiveness in the server without any risk of race conditions.
2024-07-13 14:46:41 +10:00
chainchompa
faf65c988a
Merge branch 'main' into boards-ui-update 2024-07-08 22:06:26 -04:00
chainchompa
0e092c0fb5 update is_private name 2024-07-08 22:03:12 -04:00
Ryan Dick
9da5925287 Add ruff rule to disallow relative parent imports. 2024-07-04 09:35:37 -04:00
chainchompa
6437ef3f82 add view that displays private boards with shared boards 2024-07-03 14:25:36 -04:00
maryhipp
93951dcf82 (api) ruff 2024-07-01 20:06:28 +10:00
Mary Hipp
d579aefb3e feat(api): add optional search_term query param to image list to search metadata 2024-07-01 20:06:28 +10:00
psychedelicious
9e664d7c58 feat(api): remove order_by in favor of starred_first for images records 2024-06-28 18:01:01 +10:00
maryhipp
f268fe126e feat(api): add order_by and order_dir to list images for sorting 2024-06-28 18:01:01 +10:00
maryhipp
a63dbb2c2d (api) change query param to include_archived 2024-06-28 10:36:05 +10:00
maryhipp
a7ea096b28 ruff format 2024-06-28 10:36:05 +10:00
maryhipp
5120a76ce5 cleanup 2024-06-28 10:36:05 +10:00
maryhipp
38a948ac9f feat(api): add archived query param to board list endpoint to include them in the response 2024-06-28 10:36:05 +10:00
maryhipp
c33111468e feat(api): ability to archive boards 2024-06-28 10:36:05 +10:00
Lincoln Stein
3e0fb45dd7
Load single-file checkpoints directly without conversion (#6510)
* use model_class.load_singlefile() instead of converting; works, but performance is poor

* adjust the convert api - not right just yet

* working, needs sql migrator update

* rename migration_11 before conflict merge with main

* Update invokeai/backend/model_manager/load/model_loaders/stable_diffusion.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* Update invokeai/backend/model_manager/load/model_loaders/stable_diffusion.py

Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>

* implement lightweight version-by-version config migration

* simplified config schema migration code

* associate sdxl config with sdxl VAEs

* remove use of original_config_file in load_single_file()

---------

Co-authored-by: Lincoln Stein <lstein@gmail.com>
Co-authored-by: Ryan Dick <ryanjdick3@gmail.com>
2024-06-27 17:31:28 -04:00
psychedelicious
cd70937b7f feat(api): improved model install confirmation page styling & messaging 2024-06-17 10:51:08 +10:00
chainchompa
4029972530 formatting 2024-06-14 17:15:55 -04:00
chainchompa
aae318425d added route for installing huggingface model from model marketplace 2024-06-14 17:08:39 -04:00
psychedelicious
9bd78823a3 refactor(events): use pydantic schemas for events
Our events handling and implementation has a couple pain points:
- Adding or removing data from event payloads requires changes wherever the events are dispatched from.
- We have no type safety for events and need to rely on string matching and dict access when interacting with events.
- Frontend types for socket events must be manually typed. This has caused several bugs.

`fastapi-events` has a neat feature where you can create a pydantic model as an event payload, give it an `__event_name__` attr, and then dispatch the model directly.

This allows us to eliminate a layer of indirection and some unpleasant complexity:
- Event handler callbacks get type hints for their event payloads, and can use `isinstance` on them if needed.
- Event payload construction is now the responsibility of the event itself (a pydantic model), not the service. Every event model has a `build` class method, encapsulating this logic. The build methods are provided as few args as possible. For example, `InvocationStartedEvent.build()` gets the invocation instance and queue item, and can choose the data it wants to include in the event payload.
- Frontend event types may be autogenerated from the OpenAPI schema. We use the payload registry feature of `fastapi-events` to collect all payload models into one place, making it trivial to keep our schema and frontend types in sync.

This commit moves the backend over to this improved event handling setup.
2024-05-27 09:06:02 +10:00
psychedelicious
93e4c3dbc2 feat(app): update queue item's session on session completion
The session is never updated in the queue after it is first enqueued. As a result, the queue detail view in the frontend never never updates and the session itself doesn't show outputs, execution graph, etc.

We need a new method on the queue service to update a queue item's session, then call it before updating the queue item's status.

Queue item status may be updated via a session-type event _or_ queue-type event. Adding the updated session to all these events is a hairy - simpler to just update the session before we do anything that could trigger a queue item status change event:
- Before calling `emit_session_complete` in the processor (handles session error, completed and cancel events and the corresponding queue events)
- Before calling `cancel_queue_item` in the processor (handles another way queue items can be canceled, outside the session execution loop)

When serializing the session, both in the new service method and the `get_queue_item` endpoint, we need to use `exclude_none=True` to prevent unexpected validation errors.
2024-05-24 08:59:49 +10:00
psychedelicious
88025d32c2 feat(api): downgrade metadata parse warnings to debug
I set these to warn during testing and neglected to undo the change.
2024-05-23 22:48:34 +10:00
psychedelicious
ecfff6cb1e feat(api): add metadata to upload route
Canvas images are saved by uploading a blob generated from the HTML canvas element. This means the existing metadata handling, inside the graph execution engine, is not available.

To save metadata to canvas images, we need to provide it when uploading that blob.

The upload route now has a `metadata` body param. If this is provided, we use it over any metadata embedded in the image.
2024-05-20 10:32:59 +10:00
psychedelicious
5928ade5fd feat(app): simplified create image API
Graph, metadata and workflow all take stringified JSON only. This makes the API consistent and means we don't need to do a round-trip of pydantic parsing when handling this data.

It also prevents a failure mode where an uploaded image's metadata, workflow or graph are old and don't match the current schema.

As before, the frontend does strict validation and parsing when loading these values.
2024-05-18 09:04:37 +10:00
psychedelicious
93ebc175c6 fix(app): retain graph in metadata when uploading images 2024-05-18 09:04:37 +10:00
psychedelicious
922716d2ab feat(ui): store graph in image metadata
The previous super-minimal implementation had a major issue - the saved workflow didn't take into account batched field values. When generating with multiple iterations or dynamic prompts, the same workflow with the first prompt, seed, etc was stored in each image.

As a result, when the batch results in multiple queue items, only one of the images has the correct workflow - the others are mismatched.

To work around this, we can store the _graph_ in the image metadata (alongside the workflow, if generated via workflow editor). When loading a workflow from an image, we can choose to load the workflow or the graph, preferring the workflow.

Internally, we need to update images router image-saving services. The changes are minimal.

To avoid pydantic errors deserializing the graph, when we extract it from the image, we will leave it as stringified JSON and let the frontend's more sophisticated and flexible parsing handle it. The worklow is also changed to just return stringified JSON, so the API is consistent.
2024-05-18 09:04:37 +10:00
psychedelicious
9c819f0fd8 fix(nodes): fix nsfw checker model download 2024-05-14 07:23:38 +10:00
psychedelicious
818d37f304 fix(api): retain cover image when converting model to diffusers
We need to retrieve and re-save the image, because a conversion to diffusers creates a new model record, with a new key.

See: https://old.reddit.com/r/StableDiffusion/comments/1cnx40d/invoke_42_control_layers_regional_guidance_w_text/l3bv152/
2024-05-13 08:46:07 +10:00