Commit Graph

629 Commits

Author SHA1 Message Date
Lincoln Stein
ad9f8542f2 improve swagger documentation 2024-02-29 13:16:37 -05:00
Lincoln Stein
1d95fe6116 fix a number of typechecking errors 2024-02-29 13:16:37 -05:00
Lincoln Stein
6e91d5baaf add route for model conversion from safetensors to diffusers
- Begin to add SwaggerUI documentation for AnyModelConfig and other
  discriminated Unions.
2024-02-29 13:16:37 -05:00
Lincoln Stein
93fb2d1a55 add a JIT download_and_cache() call to the model installer 2024-02-29 13:16:37 -05:00
Lincoln Stein
195768c9ee add back the heuristic_import() method and extend repo_ids to arbitrary file paths 2024-02-29 13:16:37 -05:00
Lincoln Stein
d56337f2d8 make model manager v2 ready for PR review
- Replace legacy model manager service with the v2 manager.

- Update invocations to use new load interface.

- Fixed many but not all type checking errors in the invocations. Most
  were unrelated to model manager

- Updated routes. All the new routes live under the route tag
  `model_manager_v2`. To avoid confusion with the old routes,
  they have the URL prefix `/api/v2/models`. The old routes
  have been de-registered.

- Added a pytest for the loader.

- Updated documentation in contributing/MODEL_MANAGER.md
2024-02-29 13:16:37 -05:00
Lincoln Stein
721ff58e44 consolidate model manager parts into a single class 2024-02-29 13:16:37 -05:00
Lincoln Stein
dbd2f8dc5f fix invokeai_configure script to work with new mm; rename CLIs 2024-02-29 13:16:37 -05:00
Lincoln Stein
49df4fa120 BREAKING CHANGES: invocations now require model key, not base/type/name
- Implement new model loader and modify invocations and embeddings

- Finish implementation loaders for all models currently supported by
  InvokeAI.

- Move lora, textual_inversion, and model patching support into
  backend/embeddings.

- Restore support for model cache statistics collection (a little ugly,
  needs work).

- Fixed up invocations that load and patch models.

- Move seamless and silencewarnings utils into better location
2024-02-29 13:16:37 -05:00
Lincoln Stein
92843d55eb Multiple refinements on loaders:
- Cache stat collection enabled.
- Implemented ONNX loading.
- Add ability to specify the repo version variant in installer CLI.
- If caller asks for a repo version that doesn't exist, will fall back
  to empty version rather than raising an error.
2024-02-29 13:16:37 -05:00
Lincoln Stein
fdbd288956 added textual inversion and lora loaders 2024-02-29 13:16:36 -05:00
Lincoln Stein
c0dabb5255 loaders for main, controlnet, ip-adapter, clipvision and t2i 2024-02-29 13:16:36 -05:00
Lincoln Stein
e242fe41f2 model loading and conversion implemented for vaes 2024-02-29 13:16:36 -05:00
psychedelicious
54d92cb246 chore(nodes): remove deprecation logic for nodes API 2024-02-29 13:16:36 -05:00
psychedelicious
5927ab9c36 chore(backend): rename ModelInfo -> LoadedModelInfo
We have two different classes named `ModelInfo` which might need to be used by API consumers. We need to export both but have to deal with this naming collision.

The `ModelInfo` I've renamed here is the one that is returned when a model is loaded. It's the object least likely to be used by API consumers.
2024-02-29 13:16:36 -05:00
psychedelicious
bcc57dc886 feat(nodes): use TemporaryDirectory to handle ephemeral storage in ObjectSerializerDisk
Replace `delete_on_startup: bool` & associated logic with `ephemeral: bool` and `TemporaryDirectory`.

The temp dir is created inside of `output_dir`. For example, if `output_dir` is `invokeai/outputs/tensors/`, then the temp dir might be `invokeai/outputs/tensors/tmpvj35ht7b/`.

The temp dir is cleaned up when the service is stopped, or when it is GC'd if not properly stopped.

In the event of a catastrophic crash where the temp files are not cleaned up, the user can delete the tempdir themselves.

This situation may not occur in normal use, but if you kill the process, python cannot clean up the temp dir itself. This includes running the app in a debugger and killing the debugger process - something I do relatively often.

Tests updated.
2024-02-29 13:16:36 -05:00
psychedelicious
dc003a4bac chore(nodes): update ObjectSerializerForwardCache docstring 2024-02-29 13:16:36 -05:00
psychedelicious
e464804696 chore(nodes): fix pyright ignore 2024-02-29 13:16:36 -05:00
psychedelicious
6b5f01ed3f tidy(nodes): "latents" -> "obj" 2024-02-29 13:16:36 -05:00
psychedelicious
c05c3e5a7b tidy(nodes): do not store unnecessarily store invoker 2024-02-29 13:16:36 -05:00
psychedelicious
d202243c62 feat(nodes): make delete on startup configurable for obj serializer
- The default is to not delete on startup - feels safer.
- The two services using this class _do_ delete on startup.
- The class has "ephemeral" removed from its name.
- Tests & app updated for this change.
2024-02-29 13:16:36 -05:00
psychedelicious
7e04f2bff9 fix(nodes): use metadata/board_id if provided by user, overriding WithMetadata/WithBoard-provided values 2024-02-29 13:16:36 -05:00
psychedelicious
0282f477b6 tidy(nodes): clarify comment 2024-02-29 13:16:36 -05:00
psychedelicious
62db617b41 tests: fix broken tests 2024-02-29 13:16:36 -05:00
psychedelicious
6905f18c08 tidy(nodes): minor spelling correction 2024-02-29 13:16:36 -05:00
psychedelicious
27d7a1731b feat(nodes): allow _delete_all in obj serializer to be called at any time
`_delete_all` logged how many items it deleted, and had to be called _after_ service start bc it needed access to logger.

Move the logger call to the startup method and return the the deleted stats from `_delete_all`. This lets `_delete_all` be called at any time.
2024-02-29 13:16:36 -05:00
psychedelicious
787510a65b tidy(nodes): remove object serializer on_saved
It's unused.
2024-02-29 13:16:36 -05:00
psychedelicious
d9dc5d58be revert(nodes): revert making tensors/conditioning use item storage
Turns out they are just different enough in purpose that the implementations would be rather unintuitive. I've made a separate ObjectSerializer service to handle tensors and conditioning.

Refined the class a bit too.
2024-02-29 13:16:36 -05:00
psychedelicious
614f0e8086 feat(nodes): support custom exception in ephemeral disk storage 2024-02-29 13:16:36 -05:00
psychedelicious
723009e163 feat(nodes): support custom save and load functions in ItemStorageEphemeralDisk 2024-02-29 13:16:36 -05:00
psychedelicious
abdc87d5fc feat(nodes): create helper function to generate the item ID 2024-02-29 13:16:36 -05:00
psychedelicious
7cb8e29726 feat(nodes): use ItemStorageABC for tensors and conditioning
Turns out `ItemStorageABC` was almost identical to `PickleStorageBase`. Instead of maintaining separate classes, we can use `ItemStorageABC` for both.

There's only one change needed - the `ItemStorageABC.set` method must return the newly stored item's ID. This allows us to let the service handle the responsibility of naming the item, but still create the requisite output objects during node execution.

The naming implementation is improved here. It extracts the name of the generic and appends a UUID to that string when saving items.
2024-02-29 13:16:36 -05:00
psychedelicious
f593959bea tidy(nodes): do not refer to files as latents in PickleStorageTorch (again) 2024-02-29 13:16:36 -05:00
psychedelicious
c7218dc130 feat(nodes): ItemStorageABC typevar no longer bound to pydantic.BaseModel
This bound is totally unnecessary. There's no requirement for any implementation of `ItemStorageABC` to work only on pydantic models.
2024-02-29 13:16:36 -05:00
psychedelicious
ebc3a24d0d fix(nodes): add super init to PickleStorageTorch 2024-02-29 13:16:36 -05:00
psychedelicious
315681b491 tidy(nodes): do not refer to files as latents in PickleStorageTorch 2024-02-29 13:16:36 -05:00
psychedelicious
0c149cbd3b feat(nodes): replace latents service with tensors and conditioning services
- New generic class `PickleStorageBase`, implements the same API as `LatentsStorageBase`, use for storing non-serializable data via pickling
- Implementation `PickleStorageTorch` uses `torch.save` and `torch.load`, same as `LatentsStorageDisk`
- Add `tensors: PickleStorageBase[torch.Tensor]` to `InvocationServices`
- Add `conditioning: PickleStorageBase[ConditioningFieldData]` to `InvocationServices`
- Remove `latents` service and all `LatentsStorage` classes
- Update `InvocationContext` and all usage of old `latents` service to use the new services/context wrapper methods
2024-02-29 13:16:36 -05:00
psychedelicious
06d0232841 tidy(nodes): remove unnecessary, shadowing class attr declarations 2024-02-29 13:16:36 -05:00
psychedelicious
1e4b953ccd feat(nodes): add WithBoard field helper class
This class works the same way as `WithMetadata` - it simply adds a `board` field to the node. The context wrapper function is able to pull the board id from this. This allows image-outputting nodes to get a board field "for free", and have their outputs automatically saved to it.

This is a breaking change for node authors who may have a field called `board`, because it makes `board` a reserved field name. I'll look into how to avoid this - maybe by naming this invoke-managed field `_board` to avoid collisions?

Supporting changes:
- `WithBoard` is added to all image-outputting nodes, giving them the ability to save to board.
- Unused, duplicate `WithMetadata` and `WithWorkflow` classes are deleted from `baseinvocation.py`. The "real" versions are in `fields.py`.
- Remove `LinearUIOutputInvocation`. Now that all nodes that output images also have a `board` field by default, this node is no longer necessary. See comment here for context: https://github.com/invoke-ai/InvokeAI/pull/5491#discussion_r1480760629
- Without `LinearUIOutputInvocation`, the `ImagesInferface.update` method is no longer needed, and removed.

Note: This commit does not bump all node versions. I will ensure that is done correctly before merging the PR of which this commit is a part.

Note: A followup commit will implement the frontend changes to support this change.
2024-02-29 13:16:36 -05:00
psychedelicious
d6ce901ad2 remove unused configdict import 2024-02-29 13:16:36 -05:00
psychedelicious
e38d275e20 fix(nodes): do not freeze or cache config in context wrapper
- The config is already cached by the config class's `get_config()` method.
- The config mutates itself in its `root_path` property getter. Freezing the class makes any attempt to grab a path from the config error. Unfortunately this means we cannot easily freeze the class without fiddling with the inner workings of `InvokeAIAppConfig`, which is outside the scope here.
2024-02-29 13:16:36 -05:00
psychedelicious
3fea7a6f00 feat(nodes): context.data -> context._data 2024-02-29 13:16:36 -05:00
psychedelicious
57ae23b222 feat(nodes): context.__services -> context._services 2024-02-29 13:16:36 -05:00
psychedelicious
10a4f1df8a feat(nodes): cache invocation interface config 2024-02-29 13:16:36 -05:00
psychedelicious
0fde0d1ff7 feat(nodes): do not hide services in invocation context interfaces 2024-02-29 13:16:36 -05:00
psychedelicious
a976130899 chore(nodes): add comments for ConfigInterface 2024-02-29 13:16:36 -05:00
psychedelicious
42c99efddf feat(nodes): add boards interface to invocation context 2024-02-29 13:16:36 -05:00
psychedelicious
87d28b2519 fix(nodes): restore type annotations for InvocationContext 2024-02-29 13:16:36 -05:00
psychedelicious
e600f495a2 feat(nodes): do not freeze InvocationContextData, prevents it from being subclassesd 2024-02-29 13:16:36 -05:00
psychedelicious
26b17d778d feat(nodes): move ConditioningFieldData to conditioning_data.py 2024-02-29 13:16:35 -05:00