* Fix hue adjustment
Hue adjustment wasn't working correctly because color channels got swapped. This has now been fixed and we're using PIL rather than cv2 to do the RGBA->HSV->RGBA conversion. The range of hue adjustment is also the more typical 0..360 degrees.
ApiDependencies.invoker` provides typing for the API's services layer. Marking it `Optional` results in all the routes seeing it as optional, which is not good.
Instead of marking it optional to satisfy the initial assignment to `None`, we can just skip the initial assignment. This preserves the IDE hinting in API layer and is types-legal.
## What type of PR is this? (check all applicable)
- [ ] Refactor
- [ ] Feature
- [X] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No
## Description
At install time, when the user's config specified "auto" precision, the
installer was downloading the fp32 models even when an fp16 model would
be appropriate for the OS.
## Related Tickets & Documents
<!--
For pull requests that relate or close an issue, please include them
below.
For example having the text: "closes #1234" would connect the current
pull
request to issue 1234. And when we merge the pull request, Github will
automatically close the issue.
-->
- Closes#4127
## What type of PR is this? (check all applicable)
- [ ] Refactor
- [x] Feature
- [ ] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:
## Have you updated all relevant documentation?
- [ ] Yes
- [x] No
## Description
Add lora loading for sdxl.
NOT TESTED - I run only 2 loras, please check more(including lycoris if
they already exists).
## QA Instructions, Screenshots, Recordings
https://civitai.com/models/118536/voxel-xl
![image](https://github.com/invoke-ai/InvokeAI/assets/7768370/76a6abff-cb0a-43b4-b779-a0b0e5b46e56)
## Added/updated tests?
- [ ] Yes
- [x] No
## What type of PR is this? (check all applicable)
- [ ] Refactor
- [ ] Feature
- [x] Bug Fix
- [ ] Optimization
- [ ] Documentation Update
- [ ] Community Node Submission
## Have you discussed this change with the InvokeAI team?
- [x] Yes
- [ ] No, because:
## Have you updated all relevant documentation?
- [ ] Yes
- [ ] No
## Description
## Related Tickets & Documents
<!--
For pull requests that relate or close an issue, please include them
below.
For example having the text: "closes #1234" would connect the current
pull
request to issue 1234. And when we merge the pull request, Github will
automatically close the issue.
-->
- Related Issue #
- Closes #
## QA Instructions, Screenshots, Recordings
<!--
Please provide steps on how to test changes, any hardware or
software specifications as well as any other pertinent information.
-->
## Added/updated tests?
- [ ] Yes
- [ ] No : _please replace this line with details on why tests
have not been included_
## [optional] Are there any post deployment tasks we need to perform?
## What type of PR is this? (check all applicable)
- [X] Feature
## Have you discussed this change with the InvokeAI team?
- [X] Yes
- [ ] No, because:
## Have you updated all relevant documentation?
- [X] Yes
- [ ] No
## Description
This PR adds execution time and VRAM usage reporting to each graph
invocation. The log output will look like this:
```
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Graph stats: c7764585-9c68-4d9d-a199-55e8186790f3
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> Node Calls Seconds VRAM Used
[2023-08-02 18:03:04,507]::[InvokeAI]::INFO --> main_model_loader 1 0.005s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> clip_skip 1 0.004s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> compel 2 0.512s 0.26G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> rand_int 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> range_of_size 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> iterate 1 0.001s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> metadata_accumulator 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> noise 1 0.002s 0.01G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> t2l 1 3.541s 1.93G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> l2i 1 0.679s 0.58G
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> TOTAL GRAPH EXECUTION TIME: 4.749s
[2023-08-02 18:03:04,508]::[InvokeAI]::INFO --> Current VRAM utilization 0.01G
```
On systems without CUDA, the VRAM stats are not printed.
The current implementation keeps track of graph ids separately so will
not be confused when several graphs are executing in parallel. It
handles exceptions, and it is integrated into the app framework by
defining an abstract base class and storing an implementation instance
in `InvocationServices`.
multi-select actions include:
- drag to board to move all to that board
- right click to add all to board or delete all
backend changes:
- add routes for changing board for list of image names, deleting list of images
- change image-specific routes to `images/i/{image_name}` to not clobber other routes (like `images/upload`, `images/delete`)
- subclass pydantic `BaseModel` as `BaseModelExcludeNull`, which excludes null values when calling `dict()` on the model. this fixes inconsistent types related to JSON parsing null values into `null` instead of `undefined`
- remove `board_id` from `remove_image_from_board`
frontend changes:
- multi-selection stuff uses `ImageDTO[]` as payloads, for dnd and other mutations. this gives us access to image `board_id`s when hitting routes, and enables efficient cache updates.
- consolidate change board and delete image modals to handle single and multiples
- board totals are now re-fetched on mutation and not kept in sync manually - was way too tedious to do this
- fixed warning about nested `<p>` elements
- closes#4088 , need to handle case when `autoAddBoardId` is `"none"`
- add option to show gallery image delete button on every gallery image
frontend refactors/organisation:
- make typegen script js instead of ts
- enable `noUncheckedIndexedAccess` to help avoid bugs when indexing into arrays, many small changes needed to satisfy TS after this
- move all image-related endpoints into `endpoints/images.ts`, its a big file now, but this fixes a number of circular dependency issues that were otherwise felt impossible to resolve
Currently we use some workflow trigger conditionals to run either a real test workflow (installing the app and running it) or a fake workflow, disguised as the real one, that just auto-passes.
This change refactors the workflow to use a single workflow that can be skipped, using another github action to determine which things to run depending on the paths changed.
## What type of PR is this? (check all applicable)
- [x] Refactor
## Have you discussed this change with the InvokeAI team?
- [x] No, because it's pretty minor
## Have you updated all relevant documentation?
- [x] No
## Description
This PR just moves the PR template to within the `.github/` directory
leading to a overall minimal project structure.
## Added/updated tests?
- [x] No : because this change doesn't affect or need a separate test