This is still a work in progress but seems functional. It supports
inpainting, txt2img and img2img on the ddim and k* samplers (plms
still needs work, but I know what to do).
To test this, get the file `sd-v1-5-inpainting.ckpt' from
https://huggingface.co/runwayml/stable-diffusion-inpainting and place it
at `models/ldm/stable-diffusion-v1/sd-v1-5-inpainting.ckpt`
Launch invoke.py with --model inpainting-1.5 and proceed as usual.
Caveats:
1. The inpainting model takes about 800 Mb more memory than the standard
1.5 model. This model will not work on 4 GB cards.
2. The inpainting model is temperamental. It wants you to describe the
entire scene and not just the masked area to replace. So if you want
to replace the parrot on a man's shoulder with a crow, the prompt
"crow" may fail. Try "man with a crow on shoulder" instead. The
symptom of a failed inpainting is that the area will be erased and
replaced with background.
3. This has not been tested well. Please report bugs.
- This is a merge of the final version of PR #1218 "Inpainting
Improvements"
Various merge conflicts made it easier to commit directly.
Author: Kyle0654
Co-Author: lstein
1. If tensors are passed to inpaint as init_image and/or init_mask, then
the post-generation image fixup code will be skipped.
2. Post-generation image fixup will work with either a black and white "L"
or "RGB" mask, or an "RGBA" mask.
To add a VAE autoencoder to an existing model:
1. Download the appropriate autoencoder and put it into
models/ldm/stable-diffusion
Note that you MUST use a VAE that was written for the
original CompViz Stable Diffusion codebase. For v1.4,
that would be the file named vae-ft-mse-840000-ema-pruned.ckpt
that you can download from https://huggingface.co/stabilityai/sd-vae-ft-mse-original
2. Edit config/models.yaml to contain the following stanza, modifying `weights`
and `vae` as required to match the weights and vae model file names. There is
no requirement to rename the VAE file.
~~~
stable-diffusion-1.4:
weights: models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
description: Stable Diffusion v1.4
config: configs/stable-diffusion/v1-inference.yaml
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
width: 512
height: 512
~~~
3. Alternatively from within the `invoke.py` CLI, you may use the command
`!editmodel stable-diffusion-1.4` to bring up a simple editor that will
allow you to add the path to the VAE.
4. If you are just installing InvokeAI for the first time, you can also
use `!import_model models/ldm/stable-diffusion/sd-v1.4.ckpt` instead
to create the configuration from scratch.
5. That's it!
- code for committing config changes to models.yaml now in module
rather than in invoke script
- model marked "default" is now loaded if model not specified on
command line
- uncache changed models when edited, so that they reload properly
- removed liaon from models.yaml and added stable-diffusion-1.5
models.yaml can serve as a base for expanding our support for other versions of Latent/Stable Diffusion.
Contained are parameters for default width/height, as well as where to find the config and weights for this model.
Adding a new model is as simple as adding to this file.