Commit Graph

1053 Commits

Author SHA1 Message Date
Brandon Rising
6cc7b55ec5 Add wait on exception 2023-09-21 11:18:57 -04:00
Brandon Rising
883e9973ec When an exception happens within the session processor loop, record and move on 2023-09-21 11:10:25 -04:00
psychedelicious
fa54974bff feat(nodes): invocation cache reports disabled if max size is 0 2023-09-21 09:45:52 -04:00
psychedelicious
7ac99d6bc3 feat(nodes): add enable, disable, status to invocation cache
- New routes to clear, enable, disable and get the status of the cache
- Status includes hits, misses, size, max size, enabled
- Add client cache queries and mutations, abstracted into hooks
- Add invocation cache status area (next to queue status) w/ buttons
2023-09-21 09:45:52 -04:00
psychedelicious
83ce8ef1ec fix(nodes): clipskip metadata entry is optional 2023-09-21 14:55:21 +10:00
psychedelicious
1625854eaf fix(nodes): fix ip-adapter field positioning on workflow editor 2023-09-20 21:52:29 -04:00
psychedelicious
183e2c3ee0 fix(queue): fix duplicate queue item status events 2023-09-20 20:28:31 -04:00
psychedelicious
eb2fcbe28a chore: flake8 2023-09-21 10:00:17 +10:00
psychedelicious
144ede031e feat(nodes): remove ui_type overrides for polymorphic fields 2023-09-21 10:00:17 +10:00
Brandon
b915d74127
Remove fastapi-socketio dependency, doesn't really do much for us and… (#4552)
* Remove fastapi-socketio dependency, doesn't really do much for us and isn't well maintained

* Run python black

* Remove fastapi_socketio import

* Add __app as class variable in case we ever need it later

* Run isort

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-20 22:30:01 +00:00
Kevin Turner
f222b871e9 Merge remote-tracking branch 'origin/main' into feat/taesd
# Conflicts:
#	invokeai/backend/model_management/model_probe.py
2023-09-20 10:46:55 -07:00
Brandon Rising
3c1549cf5c Merge branch 'main' into fix/nodes/selective-cache-invalidation 2023-09-20 10:41:23 -04:00
psychedelicious
bdfdf854fc fix: canvas not working on queue
Add `batch_id` to outbound events. This necessitates adding it to both `InvocationContext` and `InvocationQueueItem`. This allows the canvas to receive images.

When the user enqueues a batch on the canvas, it is expected that all images from that batch are directed to the canvas.

The simplest, most flexible solution is to add the `batch_id` to the invocation context-y stuff. Then everything knows what batch it came from, and we can have the canvas pick up images associated with its list of canvas `batch_id`s.
2023-09-20 09:57:10 -04:00
psychedelicious
4cdca45228 feat(api): add route to clear invocation cache 2023-09-20 22:53:25 +10:00
psychedelicious
c1aa2b82eb feat(nodes): default node_cache_size in MemoryInvocationCache to 0 (fully disabled) 2023-09-20 18:40:24 +10:00
psychedelicious
0a09f84b07 feat(backend): selective invalidation for invocation cache
This change enhances the invocation cache logic to delete cache entries when the resources to which they refer are deleted.

For example, a cached output may refer to "some_image.png". If that image is deleted, and this particular cache entry is later retrieved by a node, that node's successors will receive references to the now non-existent "some_image.png". When they attempt to use that image, they will fail.

To resolve this, we need to invalidate the cache when the resources to which it refers are deleted. Two options:
- Invalidate the whole cache on every image/latents/etc delete
- Selectively invalidate cache entries when their resources are deleted

Node outputs can be any shape, with any number of resource references in arbitrarily nested pydantic models. Traversing that structure to identify resources is not trivial.

But invalidating the whole cache is a bit heavy-handed. It would be nice to be more selective.

Simple solution:
- Invocation outputs' resource references are always string identifiers - like the image's or latents' name
- Invocation outputs can be stringified, which includes said identifiers
- When the invocation is cached, we store the stringified output alongside the "live" output classes
- When a resource is deleted, pass its identifier to the cache service, which can then invalidate any cache entries that refer to it

The images and latents storage services have been outfitted with `on_deleted()` callbacks, and the cache service registers itself to handle those events. This logic was copied from `ItemStorageABC`.

`on_changed()` callback are also added to the images and latents services, though these are not currently used. Just following the existing pattern.
2023-09-20 18:26:47 +10:00
psychedelicious
b7938d9ca9
feat: queued generation (#4502)
* fix(config): fix typing issues in `config/`

`config/invokeai_config.py`:
- use `Optional` for things that are optional
- fix typing of `ram_cache_size()` and `vram_cache_size()`
- remove unused and incorrectly typed method `autoconvert_path`
- fix types and logic for `parse_args()`, in which `InvokeAIAppConfig.initconf` *must* be a `DictConfig`, but function would allow it to be set as a `ListConfig`, which presumably would cause issues elsewhere

`config/base.py`:
- use `cls` for first arg of class methods
- use `Optional` for things that are optional
- fix minor type issue related to setting of `env_prefix`
- remove unused `add_subparser()` method, which calls `add_parser()` on an `ArgumentParser` (method only available on the `_SubParsersAction` object, which is returned from ArgumentParser.add_subparsers()`)

* feat: queued generation and batches

Due to a very messy branch with broad addition of `isort` on `main` alongside it, some git surgery was needed to get an agreeable git history. This commit represents all of the work on queued generation. See PR for notes.

* chore: flake8, isort, black

* fix(nodes): fix incorrect service stop() method

* fix(nodes): improve names of a few variables

* fix(tests): fix up tests after changes to batches/queue

* feat(tests): add unit tests for session queue helper functions

* feat(ui): dynamic prompts is always enabled

* feat(queue): add queue_status_changed event

* feat(ui): wip queue graphs

* feat(nodes): move cleanup til after invoker startup

* feat(nodes): add cancel_by_batch_ids

* feat(ui): wip batch graphs & UI

* fix(nodes): remove `Batch.batch_id` from required

* fix(ui): cleanup and use fixedCacheKey for all mutations

* fix(ui): remove orphaned nodes from canvas graphs

* fix(nodes): fix cancel_by_batch_ids result count

* fix(ui): only show cancel batch tooltip when batches were canceled

* chore: isort

* fix(api): return `[""]` when dynamic prompts generates no prompts

Just a simple fallback so we always have a prompt.

* feat(ui): dynamicPrompts.combinatorial is always on

There seems to be little purpose in using the combinatorial generation for dynamic prompts. I've disabled it by hiding it from the UI and defaulting combinatorial to true. If we want to enable it again in the future it's straightforward to do so.

* feat: add queue_id & support logic

* feat(ui): fix upscale button

It prepends the upscale operation to queue

* feat(nodes): return queue item when enqueuing a single graph

This facilitates one-off graph async workflows in the client.

* feat(ui): move controlnet autoprocess to queue

* fix(ui): fix non-serializable DOMRect in redux state

* feat(ui): QueueTable performance tweaks

* feat(ui): update queue list

Queue items expand to show the full queue item. Just as JSON for now.

* wip threaded session_processor

* feat(nodes,ui): fully migrate queue to session_processor

* feat(nodes,ui): add processor events

* feat(ui): ui tweaks

* feat(nodes,ui): consolidate events, reduce network requests

* feat(ui): cleanup & abstract queue hooks

* feat(nodes): optimize batch permutation

Use a generator to do only as much work as is needed.

Previously, though we only ended up creating exactly as many queue items as was needed, there was still some intermediary work that calculated *all* permutations. When that number was very high, the system had a very hard time and used a lot of memory.

The logic has been refactored to use a generator. Additionally, the batch validators are optimized to return early and use less memory.

* feat(ui): add seed behaviour parameter

This dynamic prompts parameter allows the seed to be randomized per prompt or per iteration:
- Per iteration: Use the same seed for all prompts in a single dynamic prompt expansion
- Per prompt: Use a different seed for every single prompt

"Per iteration" is appropriate for exploring a the latents space with a stable starting noise, while "Per prompt" provides more variation.

* fix(ui): remove extraneous random seed nodes from linear graphs

* fix(ui): fix controlnet autoprocess not working when queue is running

* feat(queue): add timestamps to queue status updates

Also show execution time in queue list

* feat(queue): change all execution-related events to use the `queue_id` as the room, also include `queue_item_id` in InvocationQueueItem

This allows for much simpler handling of queue items.

* feat(api): deprecate sessions router

* chore(backend): tidy logging in `dependencies.py`

* fix(backend): respect `use_memory_db`

* feat(backend): add `config.log_sql` (enables sql trace logging)

* feat: add invocation cache

Supersedes #4574

The invocation cache provides simple node memoization functionality. Nodes that use the cache are memoized and not re-executed if their inputs haven't changed. Instead, the stored output is returned.

## Results

This feature provides anywhere some significant to massive performance improvement.

The improvement is most marked on large batches of generations where you only change a couple things (e.g. different seed or prompt for each iteration) and low-VRAM systems, where skipping an extraneous model load is a big deal.

## Overview

A new `invocation_cache` service is added to handle the caching. There's not much to it.

All nodes now inherit a boolean `use_cache` field from `BaseInvocation`. This is a node field and not a class attribute, because specific instances of nodes may want to opt in or out of caching.

The recently-added `invoke_internal()` method on `BaseInvocation` is used as an entrypoint for the cache logic.

To create a cache key, the invocation is first serialized using pydantic's provided `json()` method, skipping the unique `id` field. Then python's very fast builtin `hash()` is used to create an integer key. All implementations of `InvocationCacheBase` must provide a class method `create_key()` which accepts an invocation and outputs a string or integer key.

## In-Memory Implementation

An in-memory implementation is provided. In this implementation, the node outputs are stored in memory as python classes. The in-memory cache does not persist application restarts.

Max node cache size is added as `node_cache_size` under the `Generation` config category.

It defaults to 512 - this number is up for discussion, but given that these are relatively lightweight pydantic models, I think it's safe to up this even higher.

Note that the cache isn't storing the big stuff - tensors and images are store on disk, and outputs include only references to them.

## Node Definition

The default for all nodes is to use the cache. The `@invocation` decorator now accepts an optional `use_cache: bool` argument to override the default of `True`.

Non-deterministic nodes, however, should set this to `False`. Currently, all random-stuff nodes, including `dynamic_prompt`, are set to `False`.

The field name `use_cache` is now effectively a reserved field name and possibly a breaking change if any community nodes use this as a field name. In hindsight, all our reserved field names should have been prefixed with underscores or something.

## One Gotcha

Leaf nodes probably want to opt out of the cache, because if they are not cached, their outputs are not saved again.

If you run the same graph multiple times, you only end up with a single image output, because the image storage side-effects are in the `invoke()` method, which is bypassed if we have a cache hit.

## Linear UI

The linear graphs _almost_ just work, but due to the gotcha, we need to be careful about the final image-outputting node. To resolve this, a `SaveImageInvocation` node is added and used in the linear graphs.

This node is similar to `ImagePrimitive`, except it saves a copy of its input image, and has `use_cache` set to `False` by default.

This is now the leaf node in all linear graphs, and is the only node in those graphs with `use_cache == False` _and_ the only node with `is_intermedate == False`.

## Workflow Editor

All nodes now have a footer with a new `Use Cache [ ]` checkbox. It defaults to the value set by the invocation in its python definition, but can be changed by the user.

The workflow/node validation logic has been updated to migrate old workflows to use the new default values for `use_cache`. Users may still want to review the settings that have been chosen. In the event of catastrophic failure when running this migration, the default value of `True` is applied, as this is correct for most nodes.

Users should consider saving their workflows after loading them in and having them updated.

## Future Enhancements - Callback

A future enhancement would be to provide a callback to the `use_cache` flag that would be run as the node is executed to determine, based on its own internal state, if the cache should be used or not.

This would be useful for `DynamicPromptInvocation`, where the deterministic behaviour is determined by the `combinatorial: bool` field.

## Future Enhancements - Persisted Cache

Similar to how the latents storage is backed by disk, the invocation cache could be persisted to the database or disk. We'd need to be very careful about deserializing outputs, but it's perhaps worth exploring in the future.

* fix(ui): fix queue list item width

* feat(nodes): do not send the whole node on every generator progress

* feat(ui): strip out old logic related to sessions

Things like `isProcessing` are no longer relevant with queue. Removed them all & updated everything be appropriate for queue. May be a few little quirks I've missed...

* feat(ui): fix up param collapse labels

* feat(ui): click queue count to go to queue tab

* tidy(queue): update comment, query format

* feat(ui): fix progress bar when canceling

* fix(ui): fix circular dependency

* feat(nodes): bail on node caching logic if `node_cache_size == 0`

* feat(nodes): handle KeyError on node cache pop

* feat(nodes): bypass cache codepath if caches is disabled

more better no do thing

* fix(ui): reset api cache on connect/disconnect

* feat(ui): prevent enqueue when no prompts generated

* feat(ui): add queue controls to workflow editor

* feat(ui): update floating buttons & other incidental UI tweaks

* fix(ui): fix missing/incorrect translation keys

* fix(tests): add config service to mock invocation services

invoking needs access to `node_cache_size` to occur

* optionally remove pause/resume buttons from queue UI

* option to disable prepending

* chore(ui): remove unused file

* feat(queue): remove `order_id` entirely, `item_id` is now an autoinc pk

---------

Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
2023-09-20 15:09:24 +10:00
blessedcoolant
2a3909da94 isort: fix issues 2023-09-17 12:14:58 +12:00
blessedcoolant
b7773c9962 chore: black & lint fixes 2023-09-17 12:00:21 +12:00
user1
c48e648cbb Added per-step setting of IP-Adapter weights (for param easing, etc.) 2023-09-16 12:36:16 -07:00
user1
ced297ed21 Initial implementation of IP-Adapter "begin_step_percent" and "end_step_percent" for controlling on which steps IP-Adapter is applied in the denoising loop. 2023-09-16 08:24:12 -07:00
Ryan Dick
343df03a92 isort 2023-09-15 13:18:00 -04:00
Ryan Dick
b57acb7353 Merge branch 'main' into feat/ip-adapter 2023-09-15 13:15:25 -04:00
Kent Keirsey
afe9756667
Merge branch 'main' into feat/taesd 2023-09-15 12:19:19 -04:00
Ryan Dick
990ce9a1da Lookup IP-Adapter linked image encoder from disk instead of storing in model config metadata. 2023-09-14 23:06:57 -04:00
Ryan Dick
fe19f11abf Bump DenoiseLatentsInvocation minor version. 2023-09-14 16:54:07 -04:00
Ryan Dick
c2f074dc2f Fix python static checks. 2023-09-14 16:48:47 -04:00
Ryan Dick
781e8521d5 Eliminate the need for IPAdapter.initialize(). 2023-09-14 15:02:59 -04:00
Ryan Dick
d114d0ba95 Remove need for the image_encoder param in IPAdapter.initialize(). 2023-09-14 14:14:35 -04:00
Ryan Dick
388554448a Add CLIP Vision model to IP-Adapter info and use this to infer which model to use. 2023-09-14 11:57:53 -04:00
Ryan Dick
6d0ea42a94 Get CLIPVision model download from HF working. 2023-09-14 09:54:10 -04:00
Jonathan
0f93991087
Remove multiple of 8 requirement for ImageResizeInvocation (#4538)
Testing required the width and height to be multiples of 8. This is no longer needed.
2023-09-14 08:56:17 -04:00
Ryan Dick
2c1100509f Add BaseModelType.Any to be used by CLIPVisionModel. 2023-09-14 08:19:55 -04:00
Ryan
b7296000e4 made MPS calls conditional on MPS actually being the chosen device with backend available 2023-09-13 19:33:43 -04:00
Ryan
fab055995e Add empty_cache() for MPS hardware. 2023-09-13 19:33:43 -04:00
Ryan Dick
1c8991a3df Use CLIPVisionModel under model management for IP-Adapter. 2023-09-13 19:10:02 -04:00
Ryan Dick
a2777decd4 Add a IPAdapterModelField for passing passing IP-Adapter models between nodes. 2023-09-13 13:40:59 -04:00
Kevin Turner
d219167849 fix(latent): remove temporary workaround for lack of TAESD tiling support.
Now available in diffusers 0.21: https://github.com/huggingface/diffusers/pull/4627
2023-09-13 09:40:06 -07:00
Kevin Turner
090db1ab3a Merge remote-tracking branch 'origin/main' into feat/taesd 2023-09-13 09:17:53 -07:00
Ryan Dick
3ee9a21647 Initial (barely) working version of IP-Adapter model management. 2023-09-13 08:27:24 -04:00
skunkworxdark
0f0366f1f3
Update collections.py (#4513)
* Update collections.py

RangeOfSizeInvocation was not taking step into account when generating the end point of the range

* - updated the node description to refelect this mod
- added a gt=0 constraint to ensure only a positive size of the range
- moved the + 1 to be on the size. To ensure the range is the requested size in cases where the step is negative
- formatted with Black

* Removed +1 from the range calculation

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
2023-09-13 18:26:41 +10:00
skunkworxdark
4e05dcfe2e
Prompts from file support nodes (#3964)
* New classes to support the PromptsFromFileInvocation Class
- PromptPosNegOutput
- PromptSplitNegInvocation
- PromptJoinInvocation
- PromptReplaceInvocation

* - Added PromptsToFileInvocation,
- PromptSplitNegInvocation
  - now counts the bracket depth so ensures it cout the numbr of open and close brackets match.
  - checks for escaped [ ] so ignores them if escaped e.g \[
- PromptReplaceInvocation - now has a user regex. and no regex in made caseinsesitive

* Update prompt.py

created class PromptsToFileInvocationOutput and use it in PromptsToFileInvocation instead of BaseInvocationOutput

* Update prompt.py

* Added schema_extra title and tags  for PromptReplaceInvocation, PromptJoinInvocation,  PromptSplitNegInvocation and PromptsToFileInvocation

* Added PTFileds Collect and Expand

* update to nodes v1

* added ui_type to file_path for PromptToFile

* update params for the primitive types used, remove the ui_type filepath, promptsToFile now only accepts collections until a fix is available

* updated the parameters for the StringOutput primitive

* moved the prompt tools nodes out of the prompt.py into prompt_tools.py

* more rework for v1

* added github link

* updated to use "@invocation"

* updated tags

* Adde new nodes PromptStrength and PromptStrengthsCombine

* chore: black

* feat(nodes): add version to prompt nodes

* renamed nodes from prompt related to string related. Also moved them into a strings.py file.  Also moved and renamed the PromptsFromFileInvocation from prompt.py to strings.py.  The PTfileds still remain in the Prompt_tool.py for now.

* added , version="1.0.0" to the invocations

* removed the PTField related nodes and the prompt-tools.py file all new nodes now live in the

* formatted prompt.py and strings.py with Black and fixed silly mistake in the new StringSplitInvocation

* - Revert Prompt.py back to original
- Update strings.py to be only StringJoin, StringJoinThre, StringReplace, StringSplitNeg, StringSplit

* applied isort to imports

* fix(nodes): typos in `strings.py`

---------

Co-authored-by: psychedelicious <4822129+psychedelicious@users.noreply.github.com>
Co-authored-by: Millun Atluri <Millu@users.noreply.github.com>
2023-09-13 08:06:38 +00:00
psychedelicious
30792cb259 chore: flake8 2023-09-13 16:50:25 +10:00
psychedelicious
a88f16b81c chore: isort 2023-09-13 16:50:25 +10:00
psychedelicious
fb188ce63e feat(nodes): update float_math and integer_math to use new ui_choice_labels 2023-09-13 16:50:25 +10:00
psychedelicious
57ebf735e6 feat(nodes): add InputField.ui_choice_labels: dict[str, str]
This maps values to labels for multiple-choice fields.

This allows "enum" fields (i.e. `Literal["val1", "val2", ...]` fields) to use code-friendly string values for choices, but present this to the UI as human-friendly labels.
2023-09-13 16:50:25 +10:00
psychedelicious
ec0f6e7248 chore: black 2023-09-13 16:50:25 +10:00
dunkeroni
93c55ebcf2 fixed validator when operation is first input 2023-09-13 16:50:25 +10:00
dunkeroni
41f2eaa4de updated name references for Float To Integer 2023-09-13 16:50:25 +10:00
dunkeroni
244201b45d Cleanup documentation 2023-09-13 16:50:25 +10:00